I have this system of equations: −¨z+1g∂g∂z˙z2+1g∂g∂z∗˙z˙z∗ =0 , −¨z∗+1g∗∂g∗∂z∗˙z∗2+1g∗∂g∂z˙z˙z∗ =0 . I have written them as: eq1 := - D[z[t],t,t] + (1/g[t]) * (D[ g[t],t]/ D[ z[t],t] ) * D[z[t],t]^2 + (1/g[t]) * (D[ g[t],t]/ D[ Conjugate [z[t]],t] ) * \dot{z} \dot{z}^* eq2 := - D[Conjugate[z[t]], t,t] + (1/Conjugate [g[t]] ) * (D[ Conjugate [g[t]], t]/ D[ Conjugate[z[t]], t] ) * D[Conjugate[z[t]],t]^2 + (1/Conjugate [g[t]] ) * (D[g[t], t]/ D[ z[t], t] ) * \dot{z} \dot{z}^* (* With initial conditions ) ( Note that these are arbitrary values, could be changed so that NDSolve give the most suitable solutions *) ic= { g[0]==1, z[0]==1, Derivative[1][z][0]==0} (* Numerically solved in z and g *) solz := NDSolveValue[ {eq1==0, eq2==0, ic},z , {t,0,50} ] solg := NDSolveValue[ {eq...