Skip to main content

performance tuning - Good coding for a sequence of derivatives


People on this site keep telling me that good MMa practice avoids the use of loops.


The code below calculates the same Table of derivatives two different ways, and the one with the Do loops is much faster. I think the first, slower version is calculating the nth derivative from scratch without using the (n-1)th derivative as a starting point.


Derivative[q_, 1][y][x, v] = D[(D[y[x, v], {x, 2}] + D[y[x, v], x]^2), {x, q}]/2;
ord = 9;

Print[Timing[dgdv1 = Table[D[y[x, v], {v, i}], {i, 0, ord - 1}];]];
dgdv2 = Flatten[{y[x, v], Table[0, {i, 2, ord}]}];
Print[Timing[Do[dgdv2[[i]] = D[dgdv2[[i - 1]], v], {i, 2, ord}];]];

(*{3.931225,Null}


{2.449216,Null} *)


So how can one efficiently calculate the first several derivatives of g[x,v] wrt v without using a loop?
Bonus Question: Is there some even faster way to do this calculation?


OP's EDIT: Some commentors below were confused by the first line of my code, in which I define a derivative relationship for g[x,v]. It's not really relevant to the computation speed issue this Question is about, but here is a link for people who want to learn about defining derivatives.



Answer




ord = 9;

Timing[d1 = Table[D[y[x, v], {v, i}], {i, 0, ord - 1}];][[1]]

(* 2.06537 *)

Rather than using Table, mapping onto a Range is often more efficient


Timing[
d12 = D[y[x, v], {v, #}] & /@
Range[0, ord - 1];][[1]]


(* 2.03747 *)

For a fair timing comparison, the initialization of the array should be included in the timing


Timing[
d2 = Flatten[{y[x, v], Table[0, {i, 2, ord}]}];
Do[d2[[i]] = D[d2[[i - 1]], v],
{i, 2, ord}];][[1]]

(* 1.70694 *)


With symbolic operations it can sometimes be faster to Simplify intermediate steps


d22 = Flatten[{y[x, v], Table[0, {i, 2, ord}]}];
Timing[
Do[d22[[i]] = Simplify[D[d22[[i - 1]], v]],
{i, 2, ord}];][[1]]

(* 0.307888 *)

However, for this type of problem NestList is faster (and "more Mathematica-like")



Timing[d3 = NestList[D[#, v] &, y[x, v], ord - 1];][[1]]

(* 1.58817 *)

Again using Simplify


Timing[d32 = NestList[Simplify[D[#, v]] &, y[x, v], ord - 1];][[1]]

(* 0.060246 *)

Verifying that all approaches return the same results



d1 == d12 == d2 == d22 == d3 == d32 // Simplify

(* True *)

Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...