Skip to main content

pattern matching - Orderless and Sequence


I just ran into the following subtlety.


Let us consider a function f with attribute Orderless.


Attributes[f]={Orderless};

For pattern matching, the consequence of this attribute is that when we have an expression with head f, any ordering of the arguments is tested. That can be seen in the following result:



ReplaceList[ f[a,b,c], f[x_,y_, z_] :> {x,y,z} ]

(* {{a,b,c},{a,c,b},{b,a,c},{b,c,a},{c,a,b},{c,b,a}} *)

I would have expected the same result from the next command, where in the rule I catch the three arguments of f in a BlankSequence, thereby placing a Sequence expression in the list at the right hand side:


 ReplaceList[ f[a,b,c], f[x__] :> {x} ]

(* {{a,b,c}} *)

It only gives one result! Likely, I overlooked something simple, but I fail to see a good explanation. Why does this not work?




Answer



Here is how I make sense of this behavior. When a function that appears in a pattern has attribute Orderless, the pattern-matcher must generate all possible permutations of its argument sequence before trying to match these patterns.


Refer to a simple example expression such as a /. b -> c: in a nutshell, as Fred mentioned in his comment below, I contend that the attribute Orderless causes the system to generate possible alternatives for the b expression, rather than for a.


When the argument sequence of your orderless f function contains more than one argument, then multiple permutations are generated. The specification f[x_, y_, z_] -> {x, y, z} in the second argument of ReplaceList can be thought of as equivalent to the following "expanded form":


{f[x_, y_, z_] -> {x, y, z}, f[x_, z_, y_] -> {x, y, z}, f[y_, x_, z_] -> {x, y, z}, 
f[y_, z_, x_] -> {x, y, z}, f[z_, x_, y_] -> {x, y, z}, f[z_, y_, x_] -> {x, y, z}}

Each one of those patterns matches f[a, b, c] in the first argument of ReplaceList, hence the multiple results.


However, when the pattern specified in the second argument of ReplaceList contains only one argument, then there are no permutations to account for, so only one "equivalent pattern" is considered, which matches once.





To clarify my point, here is a helper function that approximates my vision of what the pattern matcher is doing for orderless functions. Note that here we use a regular, non-orderless g function, and simulate orderless behavior explicitly.


Clear[generateOrderlessPatterns]
Attributes[g] = {};

generateOrderlessPatterns[functiontoapply_, list_, patterntype_] :=
Table[
functiontoapply[Sequence @@ (Pattern[#, patterntype] & /@ i)] -> list,
{i, Permutations[list]}
]


We can then generate "orderless-style" patterns for the non-orderless g function:


generateOrderlessPatterns[g, {x, y, z}, Blank[]]

(* Out:
{g[x_, y_, z_] -> {x, y, z}, g[x_, z_, y_] -> {x, y, z}, g[y_, x_, z_] -> {x, y, z},
g[y_, z_, x_] -> {x, y, z}, g[z_, x_, y_] -> {x, y, z}, g[z_, y_, x_] -> {x, y, z}}
*)

On the other hand, if we use a BlankSequence pattern, we obtain:


generateOrderlessPatterns[g, {x}, BlankSequence[]]


(* Out: {g[x__] -> {x}} *)

Using these patterns in ReplaceList emulates the Orderless behavior of f:


ReplaceList[g[a, b, c], generateOrderlessPatterns[g, {x, y, z}, Blank[]]]

(* Out:
{{a, b, c}, {a, c, b}, {b, a, c}, {c, a, b}, {b, c, a}, {c, b, a}}
*)


ReplaceList[g[a, b, c], generateOrderlessPatterns[g, {x}, BlankSequence[]]]

(* Out: {{a, b, c}} *)

Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...