Skip to main content

probability or statistics - Efficient maximisation of log-likelihood


I would like to efficiently find the maximum $(\sigma,\lambda)$ for the log-likelihood of the derived distribution below. I only need $\sigma$ and $\lambda$ to one decimal place - so not very precise. I have tried lowering both the AccuracyGoal and PrecisionGoal to as low as 1, or 2, but this doesn't appear to affect the rate at which the solution is obtained.


The below code creates the function, the some test data, then attempts its maximisation:


aDist[σ_, λ_] := TruncatedDistribution[{0, ∞}, 

MixtureDistribution[{1, 1}, {NormalDistribution[0, σ], ExponentialDistribution[λ]}]];

data = If[# > 0, #, 0] & /@ RandomVariate[aDist[4, 1/3], {20}];

NMaximize[{LogLikelihood[aDist[σ, λ], data], 10 > σ > 0, 1 > λ > 0}, {σ, λ}]

Whilst for 20 data points this method returns a solution in a short time, for my actual dataset I need to find a solution for a dataset of size 1000+. As it currently stands, this would be untenable for the above method.


I have tried some of the different methods available to NMaximize, including "RandomSearch", and "DifferentialEvolution". However, the method I choose does not seem to make the maximisation run faster.


I have also tried FindMaximum where I start the solver close to the actual parameter values, however this calculation appears to hang forever. I have also tried differentiating, then using NSolve, and FindRoot, but again I am not having any success. Finally I tried a variant on the $EM$ algorithm here, where I alternate between maximising over $\sigma$ then $\lambda$, but again this doesn't help.


Does anyone have any ideas here? I know I could use MCMC if I turn the problem into a Bayesian one, but for reasons I won't mention here I don't want to do this.



As an aside, I can see why it is difficult to find a reasonable maximum to this function, since there is a high degree of correlation between the parameters of the distribution. However, I can't help but think there's a solution of which I'm neglecting to think.




Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...