Skip to main content

numerics - Finding differences between Pi with varying number of decimals


I have the following code


In[32]:= N[Pi, 2]

Out[32]= 3.1


In[33]:= N[Pi, 1]

Out[33]= 3.

In[34]:= N[Pi, 2] - N[Pi, 1]

Out[34]= 0.*10^-1

Why can't Mathematica find the difference between the two numbers?



Answer




N does not round numbers or truncate them.


The internal forms of


N[Pi, 1] // FullForm
N[Pi, 2] // FullForm

are respectively


(*
3.1415926535897932384626433832795028842`1.
3.1415926535897932384626433832795028842`2.
*)


Note that the numerical values are identical although the precisions differ. Their difference is zero and all significant digits are lost. The Front End typesets numerical results in StandardForm by showing only the significant digits determined by their precision.


This may be closer to what you're after:


Table[
N[Floor[Pi, 10^n] - Floor[Pi, 10^(n + 1)]],
{n, 0, -5, -1}]
(*
{3.,
0.1,
0.04,

0.001,
0.0005,
0.00009}
*)



Update to incorporate some of the related points made in the comments:


According to the tutorial NumericalPrecision, a nonzero approximate number x with precision p is defined to have uncertainty Abs[x] 10^-p. Likewise, the precision of a nonzero approximate number x with uncertainty d is given by -Log10[d/Abs[x]].


If approximate numbers are added or subtracted, the uncertainties are added. There are similar such rules for other arithmetic operations and the evaluation of functions. Consequently given two numbers $x_1,x_2$ with uncertainties $d_1,d_2$, the precision of $x_1\pm x_2$ is given by $$ p = -\log_{10}\left({d_1+d_2 \over |\,x_1\pm x_2|} \right)\,.$$


In the OP's case the precision would be negative (negative infinity at that). In cases where the precision is negative, Mathematica returns zero with corresponding computed accuracy.



Here is an illustration from the old comments. The function precDiff[{x1, p1}, {x2, p2}] computes the precision of the difference of numbers x1, x2 with precisions p1, p2.


precDiff[{x1_, p1_}, {x2_, p2_}] :=
-Log10[(10^-p1 Abs[x1] + 10^-p2 Abs[x2])/Abs[x1 - x2]]

This shows that the computed precision of N[34/10, 2] - N[Pi, 1] is negative.


N @ precDiff[{34/10, 2}, {Pi, 1}]
N[34/10, 2] - N[Pi, 1] // FullForm
(*
-0.129473
0``0.4582220427094728

*)

This shows that the computed precision of N[35/10, 2] - N[Pi, 1] agrees with Mathematica's .


N @ precDiff[{35/10, 2}, {Pi, 1}]
N[35/10, 2] - N[Pi, 1] // FullForm
(*
0.0113533
0.35840734641020676153735661672049580005`0.011353331924907081
*)

Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...