Skip to main content

bugs - Factor fails on a simple expression


Bug introduced in 9.0 and fixed in 11.3.0




Consider the following symbolic expression (all the c's are undefined)



exp = (-4*I)*(-1 + c22)*Pi*c1[c7[c12], c7[Glu5], c7[c9[c1312][0]]]*
c13[{c7[Glu5], c7[c9[c1312][0]]}, c10[c25], c10[c24]]*
c8[c11[c15, c6], c5[l, c6]]*
c4[c5[p2, c6], c6].c4[c5[l, c6], c6].c4[c5[p1, c6], c6]*c40[c15]*
c40[c20] - (4*I)*(-1 + c22)*Pi*
c1[c7[c12], c7[Glu5], c7[c9[c1312][0]]]*
c13[{c7[Glu5], c7[c9[c1312][0]]}, c10[c25], c10[c24]]*
c8[c11[c15, c6], c5[p2, c6]]*
c4[c5[p1, c6], c6].c4[c5[p2, c6], c6]*c40[c14]*c40[c15]*
c40[c20] - (4*I)*(-1 + c22)*Pi*

c1[c7[c12], c7[Glu5], c7[c9[c1312][0]]]*
c13[{c7[Glu5], c7[c9[c1312][0]]}, c10[c25],
c10[c24]]*(c8[c5[p1, c6], c5[p1, c6]] -
2*c8[c5[p1, c6], c5[p2, c6]] +
c8[c5[p2, c6],
c5[p2, c6]])*(c4[c5[p1, c6], c6].c4[c5[p1, c6], c6].c4[
c11[c15, c6], c6] -
c4[c5[p2, c6], c6].c4[c5[p1, c6], c6].c4[c11[c15, c6], c6] +
c4[c5[p1, c6], c6].c4[c11[c15, c6], c6]*c40[c14] -
c4[c5[p2, c6], c6].c4[c11[c15, c6], c6]*c40[c14])*c40[c15]*

c40[c20] + (4*I)*(-1 + c22)*Pi*
c1[c7[c12], c7[Glu5], c7[c9[c1312][0]]]*
c13[{c7[Glu5], c7[c9[c1312][0]]}, c10[c25], c10[c24]]*
c8[c11[c15, c6],
c5[p1, c6]]*(c4[c5[p1, c6], c6].c4[c5[p1, c6], c6].c4[c5[p1, c6],
c6] - c4[c5[p1, c6], c6].c4[c5[p1, c6], c6].c4[c5[p2, c6],
c6] - c4[c5[p2, c6], c6].c4[c5[p1, c6], c6].c4[c5[p1, c6],
c6] + c4[c5[p2, c6], c6].c4[c5[p1, c6], c6].c4[c5[p2, c6],
c6] + c4[c5[p1, c6], c6].c4[c5[p1, c6], c6]*c40[c14] -
c4[c5[p1, c6], c6].c4[c5[p2, c6], c6]*c40[c14] -

c4[c5[p2, c6], c6].c4[c5[p1, c6], c6]*c40[c14] +
c4[c5[p2, c6], c6].c4[c5[p2, c6], c6]*c40[c14])*c40[c15]*
c40[c20];

Now try to evaluate the following code


AbsoluteTiming[res1 = Simplify[exp];]
AbsoluteTiming[res2 = Factor[exp];]
Simplify[res1 - res2]

On Mathematica 8 (Linux version) both Simplify and Factor finish in less than 0.1 seconds. However, with all newer versions (9, 10.3, 11.0) that I have, Factor never finishes, while Simplify is still very fast.



To me this looks like a bug/regression, but may be someone has a sensible explanation for this behavior. I have not reported this to WRI so far, but I'm planning to do so.


Edit:


res1 is


(-4*I)*(-1 + c22)*Pi*c1[c7[c12], c7[Glu5], c7[c9[c1312][0]]]*
c13[{c7[Glu5], c7[c9[c1312][0]]}, c10[c25], c10[c24]]*c40[c15]*c40[c20]*
(c40[c14]*c8[c11[c15, c6], c5[p2, c6]]*c4[c5[p1, c6], c6] .
c4[c5[p2, c6], c6] + c8[c11[c15, c6], c5[l, c6]]*
c4[c5[p2, c6], c6] . c4[c5[l, c6], c6] . c4[c5[p1, c6], c6] +
(c8[c5[p1, c6], c5[p1, c6]] - 2*c8[c5[p1, c6], c5[p2, c6]] +
c8[c5[p2, c6], c5[p2, c6]])*

(c40[c14]*(c4[c5[p1, c6], c6] . c4[c11[c15, c6], c6] -
c4[c5[p2, c6], c6] . c4[c11[c15, c6], c6]) +
c4[c5[p1, c6], c6] . c4[c5[p1, c6], c6] . c4[c11[c15, c6], c6] -
c4[c5[p2, c6], c6] . c4[c5[p1, c6], c6] . c4[c11[c15, c6], c6]) -
c8[c11[c15, c6], c5[p1, c6]]*
(c40[c14]*(c4[c5[p1, c6], c6] . c4[c5[p1, c6], c6] -
c4[c5[p1, c6], c6] . c4[c5[p2, c6], c6] - c4[c5[p2, c6], c6] .
c4[c5[p1, c6], c6] + c4[c5[p2, c6], c6] . c4[c5[p2, c6], c6]) +
c4[c5[p1, c6], c6] . c4[c5[p1, c6], c6] . c4[c5[p1, c6], c6] -
c4[c5[p1, c6], c6] . c4[c5[p1, c6], c6] . c4[c5[p2, c6], c6] -

c4[c5[p2, c6], c6] . c4[c5[p1, c6], c6] . c4[c5[p1, c6], c6] +
c4[c5[p2, c6], c6] . c4[c5[p1, c6], c6] . c4[c5[p2, c6], c6]))

res2 is


(-4*I)*(-1 + c22)*Pi*c1[c7[c12], c7[Glu5], c7[c9[c1312][0]]]*
c13[{c7[Glu5], c7[c9[c1312][0]]}, c10[c25], c10[c24]]*c40[c15]*c40[c20]*
(c40[c14]*c8[c5[p1, c6], c5[p1, c6]]*c4[c5[p1, c6], c6] .
c4[c11[c15, c6], c6] - 2*c40[c14]*c8[c5[p1, c6], c5[p2, c6]]*
c4[c5[p1, c6], c6] . c4[c11[c15, c6], c6] +
c40[c14]*c8[c5[p2, c6], c5[p2, c6]]*c4[c5[p1, c6], c6] .

c4[c11[c15, c6], c6] - c40[c14]*c8[c11[c15, c6], c5[p1, c6]]*
c4[c5[p1, c6], c6] . c4[c5[p1, c6], c6] +
c40[c14]*c8[c11[c15, c6], c5[p1, c6]]*c4[c5[p1, c6], c6] .
c4[c5[p2, c6], c6] + c40[c14]*c8[c11[c15, c6], c5[p2, c6]]*
c4[c5[p1, c6], c6] . c4[c5[p2, c6], c6] -
c40[c14]*c8[c5[p1, c6], c5[p1, c6]]*c4[c5[p2, c6], c6] .
c4[c11[c15, c6], c6] + 2*c40[c14]*c8[c5[p1, c6], c5[p2, c6]]*
c4[c5[p2, c6], c6] . c4[c11[c15, c6], c6] -
c40[c14]*c8[c5[p2, c6], c5[p2, c6]]*c4[c5[p2, c6], c6] .
c4[c11[c15, c6], c6] + c40[c14]*c8[c11[c15, c6], c5[p1, c6]]*

c4[c5[p2, c6], c6] . c4[c5[p1, c6], c6] -
c40[c14]*c8[c11[c15, c6], c5[p1, c6]]*c4[c5[p2, c6], c6] .
c4[c5[p2, c6], c6] + c8[c5[p1, c6], c5[p1, c6]]*
c4[c5[p1, c6], c6] . c4[c5[p1, c6], c6] . c4[c11[c15, c6], c6] -
2*c8[c5[p1, c6], c5[p2, c6]]*c4[c5[p1, c6], c6] . c4[c5[p1, c6], c6] .
c4[c11[c15, c6], c6] + c8[c5[p2, c6], c5[p2, c6]]*
c4[c5[p1, c6], c6] . c4[c5[p1, c6], c6] . c4[c11[c15, c6], c6] -
c8[c11[c15, c6], c5[p1, c6]]*c4[c5[p1, c6], c6] . c4[c5[p1, c6], c6] .
c4[c5[p1, c6], c6] + c8[c11[c15, c6], c5[p1, c6]]*
c4[c5[p1, c6], c6] . c4[c5[p1, c6], c6] . c4[c5[p2, c6], c6] +

c8[c11[c15, c6], c5[l, c6]]*c4[c5[p2, c6], c6] . c4[c5[l, c6], c6] .
c4[c5[p1, c6], c6] - c8[c5[p1, c6], c5[p1, c6]]*
c4[c5[p2, c6], c6] . c4[c5[p1, c6], c6] . c4[c11[c15, c6], c6] +
2*c8[c5[p1, c6], c5[p2, c6]]*c4[c5[p2, c6], c6] . c4[c5[p1, c6], c6] .
c4[c11[c15, c6], c6] - c8[c5[p2, c6], c5[p2, c6]]*
c4[c5[p2, c6], c6] . c4[c5[p1, c6], c6] . c4[c11[c15, c6], c6] +
c8[c11[c15, c6], c5[p1, c6]]*c4[c5[p2, c6], c6] . c4[c5[p1, c6], c6] .
c4[c5[p1, c6], c6] - c8[c11[c15, c6], c5[p1, c6]]*
c4[c5[p2, c6], c6] . c4[c5[p1, c6], c6] . c4[c5[p2, c6], c6])

Answer




This bug in Factor has been addressed as of version 11.3.0.


While the example may take some seconds to run, it will not hang


AbsoluteTiming[res1 = Simplify[exp];]
AbsoluteTiming[res2 = Factor[exp];]
Simplify[res1 - res2]

(* {0.060817, Null} *)
(* {13.5211, Null} *)
(* 0 *)

Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...