Skip to main content

animation - How to simulate the true reflective movement of a particle bouncing around in an ellipse?


Please help me to simulate the movement of a particle inside a region with elliptical walls such that particle is reflected from the walls and continues to move.



A friend was able write code to simulate a particle represented by a Disk bouncing around inside a square, but we can't do it for an ellipse.


x = 0.5;
y = 0.5;

vx = 1;
vy = Pi/2;

step = 0.01;
radius = 0.05;


Animate[
x = x + vx*step;
y = y + vy*step;
If[Abs[x - 1] <= radius || Abs[x] <= radius , vx = -vx];
If[Abs[y - 1] <= radius || Abs[y] <= radius, vy = -vy];
Graphics[{
Cyan, Rectangle[{0, 0}, {1, 1}],
Gray, Disk[{x, y}, radius],
Point[{0.0, 0.0}], Point[{1.0, 1.0}]
}],

{t, 0, Infinity}
]

Answer



Edit V10!


This is simple example what we can now do in real time!


R = RegionUnion @@ Table[Disk[{Cos[i], Sin[i]}, .4], {i, 0, 2 Pi, Pi/6.}];
R2 = RegionBoundary@DiscretizeRegion@R;


go[] := (While[r > .105, x += v; r = RegionDistance[R2, x]; Pause[.01]]; bounce[];)


bounce[] := With[{normal = Normalize[x - RegionNearest[R2, x]]},
If[break, Abort[]];
v = .01 Normalize[v - 2 v.normal normal];
x = x + v;
r = RegionDistance[R2, x]; go[]
]

x = {1, 0.};
pos = {x};

break = False;
v = .01 Normalize@{2, 1.};
r = RegionDistance[R2, x];

RegionPlot[R2, Epilog -> Dynamic@Disk[x, .1], AspectRatio -> Automatic]
Button["break at edge", break = True;]
go[]

enter image description here


This is an example, not perfect but nice enough to start.





V9


Unfortunately I don't have time to explain now. But take a look at wikipedia ellips site, tangent line part especially.


DynamicModule[{u = 0, t0, imp, v1, x0 = {0, .49}, v0 = {.5, -1.0}, t, a = 1, b = .5, 
c, f1, f2},
DynamicWrapper[
Graphics[{ Thick, Scale[Circle[], {a, b}], AbsolutePointSize@7, Dynamic@Point[x0],
Dashed, Thin, Dynamic@Line[{{x0, imp}, {imp, imp + Normalize@v1},
{imp - normal, imp + normal}}]
}, PlotRange -> 1.1, ImageSize -> 500, Frame -> True],

Refresh[
If[(#/a)^2 + (#2/b)^2 & @@ x0 < 1,
x0 += v0;,
x0 = imp + v1; v0 = v1; rec]
, TrackedSymbols :> {}, UpdateInterval -> .001]]
,
Initialization :> (
c = Sqrt[a^2 - b^2]; v0 = Normalize[v0]/100; f1 = {-c, 0}; f2 = {c, 0};

rec := ({t0, imp} = {t, x0 + t v0

} /. Quiet@NSolve[(#/a)^2 + (#2/b)^2 & @@ (x0 + t v0) == 1. &&
t > 0, t, Reals][[1]];
normal = Normalize[Normalize[imp - f1] + Normalize[imp - f2]];

v1 = Normalize[v0 - 2 normal (v0.normal)]/100;(*bounce*));

rec)]

enter image description here


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...