Given a sorted list of numbers S, I want to create a function that accepts a list of numbers L and for each number l∈L it returns the index of the largest number s∈S such that $s
SeedRandom[13];
S = Sort @ RandomReal[10, 5]
{0.405196, 4.56535, 7.04274, 7.95001, 8.6823}
And, here are a couple examples of the argument to the function:
SeedRandom[10];
list1 = RandomReal[10, 5]
list2 = RandomReal[10, 3]
{6.67917, 8.33874, 4.61316, 4.83263, 9.52033}
{6.0669, 1.22425, 6.13959}
Then, I want to create a function f
:
f = findIndices[S];
such that
f[list1]
f[list2]
return:
(*
{2, 4, 2, 2, 5}
{2, 1, 2}
*)
One possibility is to use:
findIndices[s_] := Interpolation[
Thread[{s, Range@Length@s-1}],
InterpolationOrder->0,
"ExtrapolationHandler" -> {Evaluate[Length[s]]&, "WarningMessage" -> False}
]
But, this approach is quite slow when dealing with large arguments:
f = findIndices[S];
tst = RandomReal[{.5, 10}, 10^6];
f[tst]; //AbsoluteTiming
{1.15025, Null}
I'm interested in arguments on the order of 10^6 elements, and ordered sets S on the order 10^4 elements. Is there a faster method?
Comments
Post a Comment