Skip to main content

plotting - Plot Indefinite integral


I'm having a hard time to find a solution to a numerical limitation on mathematica:


PwD = 0.005*Integrate[(Exp[-(0.25/\[Tau])]/\[Tau])*
Integrate[Exp[-((Tan[45*Degree]^2 - (z + 30)^2)/(4*\[Tau]))]*
(1 +
2*Sum[Exp[-((n^2*Pi^2*\[Tau])/10000)]*Cos[0.8*n*Pi]*
Cos[(n*Pi)/2 - (n*Pi*z)/100], {n, 1, 4}]), {z, -50,
50}], {\[Tau], 0, t}]


Mathematica graphics


After solving the integral in space {z,-50,50} I need to evaluate the indefinite integral in time {tau,0,t}, so I eventually generate a plot of PwD as function of Log[t]. But it seems that it does not converge.


Can someone provide an alternative way?




Hi everybody thanks for the comments... They sound about right! In the past 2 months I dedicated my time to derive these solutions again - once I had no help from the author. Well, I finally get it! The published expression has a type mistake... The right equation should be:


PwD = (1/200)*Integrate[
(1/(E^(0.25/\[Tau])*\[Tau]))*Integrate[
(1 + 2*Sum[(Cos[0.8*n*Pi]*Cos[(n*Pi)/2 -
(n*Pi*z)/100])/E^((n^2*Pi^2*\[Tau])/
10000), {n, 1, 100}])/

E^((Tan[\[Psi]*Degree]^2*(z + 30)^2)/(4*\[Tau])),
{z, -50, 50}], {\[Tau], 0, t}]

Now I'm able to generate the graphics. For different angles \[Psi] this is what I did:


Pw1 = (Exp[-0.25/t]/t)*
Integrate[
Exp[-(((Tan[0 Degree]^2)*(z + 30)^2)/(4*t))]*(1 +
2*Sum[Exp[-((n^2)*(Pi^2)*t)/(100^2)]*Cos[0.8*n*Pi]*
Cos[(n*Pi/2) - (n*Pi*z/100)], {n, 1, 100}]), {z, -50, 50}];
Pw2 = (Exp[-0.25/t]/t)*

Integrate[
Exp[-(((Tan[30 Degree]^2)*(z + 30)^2)/(4*t))]*(1 +
2*Sum[Exp[-((n^2)*(Pi^2)*t)/(100^2)]*Cos[0.8*n*Pi]*
Cos[(n*Pi/2) - (n*Pi*z/100)], {n, 1, 100}]), {z, -50, 50}];
Pw3 = (Exp[-0.25/t]/t)*
Integrate[
Exp[-(((Tan[60 Degree]^2)*(z + 30)^2)/(4*t))]*(1 +
2*Sum[Exp[-((n^2)*(Pi^2)*t)/(100^2)]*Cos[0.8*n*Pi]*
Cos[(n*Pi/2) - (n*Pi*z/100)], {n, 1, 100}]), {z, -50, 50}];


PD1[y_] := 0.005*NIntegrate[Pw1, {t, 0, y}, MaxRecursion -> 20];
PD2[y_] := 0.005*NIntegrate[Pw2, {t, 0, y}, MaxRecursion -> 20];
PD3[y_] := 0.005*NIntegrate[Pw3, {t, 0, y}, MaxRecursion -> 20];

T1 = Table[{y,
PD1[y]}, {y, {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2,
2.2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85,
90, 100, 110, 120, 130, 140, 150, 200, 250, 300, 350, 400, 450,
500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100,

1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200,
2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000, 3500, 4000,
4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500,
10000, 11000, 13000, 15000, 17000, 19000, 20000, 22000, 24000,
26000, 28000, 30000, 35000, 40000, 45000, 50000, 55000, 60000,
65000, 70000, 75000, 80000, 90000, 95000, 100000, 150000, 200000,
250000, 300000, 350000, 400000, 450000, 500000, 550000, 600000,
700000, 800000, 900000, 1000000}}];
T2 = Table[{y,
PD2[y]}, {y, {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2,

2.2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85,
90, 100, 110, 120, 130, 140, 150, 200, 250, 300, 350, 400, 450,
500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100,
1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200,
2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000, 3500, 4000,
4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500,
10000, 11000, 13000, 15000, 17000, 19000, 20000, 22000, 24000,
26000, 28000, 30000, 35000, 40000, 45000, 50000, 55000, 60000,
65000, 70000, 75000, 80000, 90000, 95000, 100000, 150000, 200000,

250000, 300000, 350000, 400000, 450000, 500000, 550000, 600000,
700000, 800000, 900000, 1000000}}];
T3 = Table[{y,
PD3[y]}, {y, {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2,
2.2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85,
90, 100, 110, 120, 130, 140, 150, 200, 250, 300, 350, 400, 450,
500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100,
1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200,
2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000, 3500, 4000,

4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500,
10000, 11000, 13000, 15000, 17000, 19000, 20000, 22000, 24000,
26000, 28000, 30000, 35000, 40000, 45000, 50000, 55000, 60000,
65000, 70000, 75000, 80000, 90000, 95000, 100000, 150000, 200000,
250000, 300000, 350000, 400000, 450000, 500000, 550000, 600000,
700000, 800000, 900000, 1000000}}];

PwD1 = Interpolation[T1];
PwD2 = Interpolation[T2];
PwD3 = Interpolation[T3];


P1 = LogLogPlot[{PwD1[y], y*PwD1'[y]}, {y, 0.1, 1000000},
PlotRange -> {0.01, 10}, PlotStyle -> {{Black}, {Dashed, Black}},
Frame -> True, FrameLabel -> {tD, "PD e tD*PD'"},
BaseStyle -> {FontSize -> 12}];
P2 = LogLogPlot[{PwD2[y], y*PwD2'[y]}, {y, 0.1, 1000000},
PlotRange -> {0.01, 10}, PlotStyle -> {{Brown}, {Dashed, Brown}}];
P3 = LogLogPlot[{PwD3[y], y*PwD3'[y]}, {y, 0.1, 1000000},
PlotRange -> {0.01, 10}, PlotStyle -> {{Purple}, {Dashed, Purple}}];


Show[P1, P2, P3]

The problem is that it takes a very long time to compute these codes... Since I don't have good programming skills, could anyone propose an alternative way to computing this plot?


thanks



Answer



You could do the indefinite integral and put in the limits afterwards. E.g., on Linux I get a speed-up of about 14 for one integral (I have no time to do more right now ...)


Mathematica 8.0 for Linux x86 (64-bit)
Copyright 1988-2011 Wolfram Research, Inc.

In[1]:= !!i

Print["timing 1: ",
First @ AbsoluteTiming[
Pw3 = ExpandAll[(Exp[-0.25/t]/t)*
Integrate[
Exp[-((Tan[60*Degree]^2*
(z + 30)^2)/(4*t))]*
(1 + 2*Sum[Exp[-(n^2*Pi^2*t)/
100^2]*Cos[0.8*n*Pi]*
Cos[n*(Pi/2) - n*Pi*
(z/100)], {n, 1, 100}]),

{z, -50, 50}]]; ]
];
Print["timing 2 : ",
First @ AbsoluteTiming[
nPw3 = Expand[(Exp[-0.25/t]/t)*
((#1 /. z -> 50) - (#1 /.
z -> -50) & )[
ParallelMap[(ExpandAll[Integrate[#1, z]] & ),
(TrigToExp[Expand[
Exp[-((Tan[60*Degree]^2*

(z + 30)^2)/(4*t))]*
(1 + 2*Sum[Exp[-(n^2*Pi^2*
t)/100^2]*Cos[0.8*n*Pi]*
Cos[n*(Pi/2) - n*Pi*
(z/100)], {n, 1,
100}])]])]] ]; ]
]
Print["check ", Chop[Pw3 - nPw3]]

In[1]:= <
timing 1: 75.121517
Launching kernels... Mathematica 8.0 for Linux x86 (64-bit) Copyright 1988-2011 Wolfram Research, Inc.
timing 2 : 5.255553
check 0

Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

dynamic - How can I make a clickable ArrayPlot that returns input?

I would like to create a dynamic ArrayPlot so that the rectangles, when clicked, provide the input. Can I use ArrayPlot for this? Or is there something else I should have to use? Answer ArrayPlot is much more than just a simple array like Grid : it represents a ranged 2D dataset, and its visualization can be finetuned by options like DataReversed and DataRange . These features make it quite complicated to reproduce the same layout and order with Grid . Here I offer AnnotatedArrayPlot which comes in handy when your dataset is more than just a flat 2D array. The dynamic interface allows highlighting individual cells and possibly interacting with them. AnnotatedArrayPlot works the same way as ArrayPlot and accepts the same options plus Enabled , HighlightCoordinates , HighlightStyle and HighlightElementFunction . data = {{Missing["HasSomeMoreData"], GrayLevel[ 1], {RGBColor[0, 1, 1], RGBColor[0, 0, 1], GrayLevel[1]}, RGBColor[0, 1, 0]}, {GrayLevel[0], GrayLevel...