Skip to main content

plotting - Plot Indefinite integral


I'm having a hard time to find a solution to a numerical limitation on mathematica:


PwD = 0.005*Integrate[(Exp[-(0.25/\[Tau])]/\[Tau])*
Integrate[Exp[-((Tan[45*Degree]^2 - (z + 30)^2)/(4*\[Tau]))]*
(1 +
2*Sum[Exp[-((n^2*Pi^2*\[Tau])/10000)]*Cos[0.8*n*Pi]*
Cos[(n*Pi)/2 - (n*Pi*z)/100], {n, 1, 4}]), {z, -50,
50}], {\[Tau], 0, t}]


Mathematica graphics


After solving the integral in space {z,-50,50} I need to evaluate the indefinite integral in time {tau,0,t}, so I eventually generate a plot of PwD as function of Log[t]. But it seems that it does not converge.


Can someone provide an alternative way?




Hi everybody thanks for the comments... They sound about right! In the past 2 months I dedicated my time to derive these solutions again - once I had no help from the author. Well, I finally get it! The published expression has a type mistake... The right equation should be:


PwD = (1/200)*Integrate[
(1/(E^(0.25/\[Tau])*\[Tau]))*Integrate[
(1 + 2*Sum[(Cos[0.8*n*Pi]*Cos[(n*Pi)/2 -
(n*Pi*z)/100])/E^((n^2*Pi^2*\[Tau])/
10000), {n, 1, 100}])/

E^((Tan[\[Psi]*Degree]^2*(z + 30)^2)/(4*\[Tau])),
{z, -50, 50}], {\[Tau], 0, t}]

Now I'm able to generate the graphics. For different angles \[Psi] this is what I did:


Pw1 = (Exp[-0.25/t]/t)*
Integrate[
Exp[-(((Tan[0 Degree]^2)*(z + 30)^2)/(4*t))]*(1 +
2*Sum[Exp[-((n^2)*(Pi^2)*t)/(100^2)]*Cos[0.8*n*Pi]*
Cos[(n*Pi/2) - (n*Pi*z/100)], {n, 1, 100}]), {z, -50, 50}];
Pw2 = (Exp[-0.25/t]/t)*

Integrate[
Exp[-(((Tan[30 Degree]^2)*(z + 30)^2)/(4*t))]*(1 +
2*Sum[Exp[-((n^2)*(Pi^2)*t)/(100^2)]*Cos[0.8*n*Pi]*
Cos[(n*Pi/2) - (n*Pi*z/100)], {n, 1, 100}]), {z, -50, 50}];
Pw3 = (Exp[-0.25/t]/t)*
Integrate[
Exp[-(((Tan[60 Degree]^2)*(z + 30)^2)/(4*t))]*(1 +
2*Sum[Exp[-((n^2)*(Pi^2)*t)/(100^2)]*Cos[0.8*n*Pi]*
Cos[(n*Pi/2) - (n*Pi*z/100)], {n, 1, 100}]), {z, -50, 50}];


PD1[y_] := 0.005*NIntegrate[Pw1, {t, 0, y}, MaxRecursion -> 20];
PD2[y_] := 0.005*NIntegrate[Pw2, {t, 0, y}, MaxRecursion -> 20];
PD3[y_] := 0.005*NIntegrate[Pw3, {t, 0, y}, MaxRecursion -> 20];

T1 = Table[{y,
PD1[y]}, {y, {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2,
2.2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85,
90, 100, 110, 120, 130, 140, 150, 200, 250, 300, 350, 400, 450,
500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100,

1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200,
2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000, 3500, 4000,
4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500,
10000, 11000, 13000, 15000, 17000, 19000, 20000, 22000, 24000,
26000, 28000, 30000, 35000, 40000, 45000, 50000, 55000, 60000,
65000, 70000, 75000, 80000, 90000, 95000, 100000, 150000, 200000,
250000, 300000, 350000, 400000, 450000, 500000, 550000, 600000,
700000, 800000, 900000, 1000000}}];
T2 = Table[{y,
PD2[y]}, {y, {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2,

2.2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85,
90, 100, 110, 120, 130, 140, 150, 200, 250, 300, 350, 400, 450,
500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100,
1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200,
2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000, 3500, 4000,
4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500,
10000, 11000, 13000, 15000, 17000, 19000, 20000, 22000, 24000,
26000, 28000, 30000, 35000, 40000, 45000, 50000, 55000, 60000,
65000, 70000, 75000, 80000, 90000, 95000, 100000, 150000, 200000,

250000, 300000, 350000, 400000, 450000, 500000, 550000, 600000,
700000, 800000, 900000, 1000000}}];
T3 = Table[{y,
PD3[y]}, {y, {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2,
2.2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85,
90, 100, 110, 120, 130, 140, 150, 200, 250, 300, 350, 400, 450,
500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100,
1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200,
2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000, 3500, 4000,

4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500,
10000, 11000, 13000, 15000, 17000, 19000, 20000, 22000, 24000,
26000, 28000, 30000, 35000, 40000, 45000, 50000, 55000, 60000,
65000, 70000, 75000, 80000, 90000, 95000, 100000, 150000, 200000,
250000, 300000, 350000, 400000, 450000, 500000, 550000, 600000,
700000, 800000, 900000, 1000000}}];

PwD1 = Interpolation[T1];
PwD2 = Interpolation[T2];
PwD3 = Interpolation[T3];


P1 = LogLogPlot[{PwD1[y], y*PwD1'[y]}, {y, 0.1, 1000000},
PlotRange -> {0.01, 10}, PlotStyle -> {{Black}, {Dashed, Black}},
Frame -> True, FrameLabel -> {tD, "PD e tD*PD'"},
BaseStyle -> {FontSize -> 12}];
P2 = LogLogPlot[{PwD2[y], y*PwD2'[y]}, {y, 0.1, 1000000},
PlotRange -> {0.01, 10}, PlotStyle -> {{Brown}, {Dashed, Brown}}];
P3 = LogLogPlot[{PwD3[y], y*PwD3'[y]}, {y, 0.1, 1000000},
PlotRange -> {0.01, 10}, PlotStyle -> {{Purple}, {Dashed, Purple}}];


Show[P1, P2, P3]

The problem is that it takes a very long time to compute these codes... Since I don't have good programming skills, could anyone propose an alternative way to computing this plot?


thanks



Answer



You could do the indefinite integral and put in the limits afterwards. E.g., on Linux I get a speed-up of about 14 for one integral (I have no time to do more right now ...)


Mathematica 8.0 for Linux x86 (64-bit)
Copyright 1988-2011 Wolfram Research, Inc.

In[1]:= !!i

Print["timing 1: ",
First @ AbsoluteTiming[
Pw3 = ExpandAll[(Exp[-0.25/t]/t)*
Integrate[
Exp[-((Tan[60*Degree]^2*
(z + 30)^2)/(4*t))]*
(1 + 2*Sum[Exp[-(n^2*Pi^2*t)/
100^2]*Cos[0.8*n*Pi]*
Cos[n*(Pi/2) - n*Pi*
(z/100)], {n, 1, 100}]),

{z, -50, 50}]]; ]
];
Print["timing 2 : ",
First @ AbsoluteTiming[
nPw3 = Expand[(Exp[-0.25/t]/t)*
((#1 /. z -> 50) - (#1 /.
z -> -50) & )[
ParallelMap[(ExpandAll[Integrate[#1, z]] & ),
(TrigToExp[Expand[
Exp[-((Tan[60*Degree]^2*

(z + 30)^2)/(4*t))]*
(1 + 2*Sum[Exp[-(n^2*Pi^2*
t)/100^2]*Cos[0.8*n*Pi]*
Cos[n*(Pi/2) - n*Pi*
(z/100)], {n, 1,
100}])]])]] ]; ]
]
Print["check ", Chop[Pw3 - nPw3]]

In[1]:= <
timing 1: 75.121517
Launching kernels... Mathematica 8.0 for Linux x86 (64-bit) Copyright 1988-2011 Wolfram Research, Inc.
timing 2 : 5.255553
check 0

Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...