Skip to main content

machine learning - Training data generator?


Python has generators which save memory, is there a technique for generating in memory examples for your training set "on the fly".



For example purposes, I constructed here a regressor for blur:


randomMask[img_] := 
Module[{t, h, g, d = ImageDimensions[img]},
t = Table[{PointSize@RandomReal[{0, .1}],
RandomChoice[{Point,
Rectangle[#, # + RandomReal[{-200, 200}, {2}]] &}]@
RandomPoint[Rectangle[{0, 0}, d]]}, {RandomChoice[{0, 1, 2, 3,
4, 8, 14, 20, 50, 200}]}];
g = Graphics[t, PlotRange -> Transpose[{{0, 0}, d}], ImageSize -> d];
{g, Area@DiscretizeGraphics@g/Times @@ d}]


makeExample[img_] := Module[{g, v},
{g, v} = randomMask[img];
ImageCompose[img, SetAlphaChannel[Blur[img, 15], ColorNegate@g]] ->
v
];

imgs = ConformImages[ExampleData /@ ExampleData["TestImage"], {100, 100}];

(* this is a large set that I don't want to precompute !!! *)

train = Table[makeExample@RandomChoice[imgs], {3000}]
test = Table[makeExample@RandomChoice[imgs], {500}];

convnet=NetChain[{
ConvolutionLayer[20,{5,5}],
ElementwiseLayer[Ramp],
PoolingLayer[{2,2},{2,2}],
ConvolutionLayer[50,{5,5}],
ElementwiseLayer[Ramp],
PoolingLayer[{2,2},{2,2}],

FlattenLayer[],
DotPlusLayer[500],
ElementwiseLayer[Ramp],
DotPlusLayer[50],
ElementwiseLayer[Ramp],
DotPlusLayer[1]
},
"Input"->NetEncoder[{"Image",{100,100}}],
"Output"->NetDecoder["Scalar"]
]


trainedConvnet = NetTrain[convnet, train, TargetDevice -> "GPU"]
output = trainedConvnet /@ Keys[test];

target = test // Values;
meanSquareLoss = Mean@Flatten[(#Output - #Target)^2, Infinity] &;

data = <|"Output" -> {{output}}, "Target" -> {{target}}|>;
N@meanSquareLoss@data


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...