Skip to main content

symbolic - Improving the performance of a package for working with rational functions



As Mathematica gets slow for large symbolic calculations, the cost of putting terms over a common denominator (Together), in particular, gets too high. It occurred to me that, if one has a small number of variables, it should be much faster if we represent our expressions by arrays of their coefficients.


I have implemented a small package that does this with an improvement of a factor of 10 in both speed and memory (in putting Together a sum of rational terms, more or less independent of the size of the sum), but it seems to me that I should be able to do better. I post my package here with the hope that someone might point out glaring performance bottlenecks.


First, the public initializations, with their usability comments.


AA::usage = "DATA STRUCTURE AA[num,den] that stores polynomials as their tensor coefficients of a basis, multiplication is the tensor product"
PolytoAA::usage = "PolytoAA[poly_,vars_List] returns an AA[num_SparseArray,1]"
AAtoPoly::usage = "AAtoPoly[aa_AA,vars_] gives back a rational function of the polynomials num/den"

The actual code begins here, PolProd takes care of multiplying polynomials


SetAttributes[PolProd, Orderless]
PolProd[i__Integer] := Times @ i;

PolProd[sa__SparseArray] := Outer[Times, sa];
(*multiplying 2 polynomials is the tensor product in their vector space*)
PolProd[i__Integer, sa__SparseArray] := Times[i] Outer[Times, sa];

(*It would be cleaner and more object oriented to call two instances of polprod
on i and sa but it would force more pattern matching so it would be less efficient*)

This code performs the arithmetic operations on the AA[num,den] data structure


AA /: i_Integer*AA[num_, den_] := AA[i*num, den]
(*absorb all integer into AA, this means that the sum rule has to do less

pattern matching and is more efficient, overall more efficient?*)
AA /: AA[a_, a_] := 1
AA /: AA[0, _] := 0
AA /: AA[num1_, den1_]*AA[num2_, den2_] :=
AA @@ (PolProd[#1, #2]& @@@ {{num1, num2}, {den1, den2}})
AA /: AA[num1_, den_] + AA[num2_, den_] :=
AA[num1 + num2, den]
(*can't check for a SparseArray cos it might be an Integer,
by dimensional analysis we should get two arrays here though*)
AA /: AA[num1_, den1_] + AA[num2_, den2_] :=

AA[PolProd[num1, den2] + PolProd[num2, den1], PolProd[den1, den2]]
(*together rule, this a recursive implementation that doesn't treat the
sum of many AA all at once, this is intentional cause it minimises the
number of array outer products that are calculated and I believe it's
the more efficient but maybe not*)
AA /: aa_AA^n_Integer :=
If[n < 0, Reverse @ #, #]& @ (PolProd[Sequence @@ ConstantArray[#, Abs @ n]]& /@ aa)
(*this takes care of both efficiency of recursively pattern matching the
product rule on large n and dividing by AA*)
(*NOTICE THE WEIRD SYNTAX/BUG If[n<0, Reverse @ #, #]& @ THERE ARE TWO INTANCES OF @*)


I also post the the functions that go between AA and the polynomials for the sake of clarity and completeness


AAtoPoly[aa_AA,vars_] := #1/#2& @@ (aa /. l_SparseArray :> 
Dot[l, Sequence @@ ConstantArray[vars, Depth[l] - 1 (*gives rank of the tensor*)]])
PolytoAA[expr_^n_, vars_List] := PolytoAA[expr, vars]^n
PolytoAA[expr : (_Times | _Plus), vars_List] := PolytoAA[#, vars]& /@ expr
PolytoAA[expr_,vars_List] /; PolynomialQ[expr, vars] :=
AA[Last[CoefficientArrays[expr, vars]](*num*), 1 (*den*)]

BENCHMARKS



I define some random, small polynomials


vars = a /@ Range[10]
pols = Table[
a[RandomInteger[{1, 10}]] + a[RandomInteger[{1, 10}]], {20}] //
DeleteDuplicates
% // Length


{a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8], a[9], a[10]}


{a[1] + a[7], a[4] + a[6], a[2] + a[4], a[5] + a[9], 2 a[8], a[5] + a[6], a[2] + a[9], a[4] + a[7], a[4] + a[9], a[7] + a[9], a[3] + a[7], a[2] + a[6], a[1] + a[9], a[2] + a[3], a[7] + a[10], 2 a[2], a[3] + a[9]}



17



First I put them Together using my code


aa = PolytoAA[#, vars] & /@ pols;
togaa = Sum[aa[[i]]/aa[[i + 1]], {i, Length@pols - 1}] //
AbsoluteTiming
% // ByteCount


{0.8960513,AA[SparseArray[<274432>,{10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10}],SparseArray[<16384>,{10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10}]]}



18614128



and now without my implementation


togpols = (Sum[pols[[i]]/pols[[i + 1]], {i, Length@pols - 1}] // 
Together) // AbsoluteTiming//
% // ByteCount


{8.2054693,...}


34567480




I check that both give the same result


togpols2 = AAtoPoly[togaa // Last, vars](*//Simplify*);
Last[togpols] - togpols2 // Together


0





Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...