Skip to main content

Retrieving the evaluation result of an Initialization Cell in a notebook `nb1` from another notebook `nb2`



I have a very long code in a notebook nb1 in which all the initialization cells are tagged. I have another notebook nb2 where I want to evaluate the initialization cells in nb1 and get the results in nb2 by using CellTags.


I tried the following code, which does something but I cannot see the results in nb2.


myButton[tag_] := 
Button["Evaluate " <> tag,
NotebookEvaluate[
"C:\\Users\\ttemel\\Desktop\\World_Bank_projects\\WB_Contract_2\\\
Extension_to_1st_contract_27oct19\\IOdatabase_oecd\\database_IOtables_\
SA_NO_UK_2000_2015_run_1.m", EvaluationElements -> {"Tags" -> {tag}}],
Method -> "Queued"];
Grid[{Map[myButton, {"SectorIOMarketChains", "DensityPlot"}]}]

CellPrint[
ExpressionCell[Defer[Print["SectorIOMarketChains"]], "Input",
CellTags -> {"SectorIOMarketChains"}, ShowCellTags -> True]]
CellPrint[
ExpressionCell[Defer[Print["DensityPlot"]], "Input",
CellTags -> {"DensityPlot"}, ShowCellTags -> True]]

Why does not this code give me the results in nb2?



Answer



Your file "database_IOtables _SA _NO _UK _ 2000_ 2015_run _ 1.m" isn't a Notebook, but a Package - right? Hence the EvaluationElements option is simply ignored, because Packages has no Cells and associated CellTags.



Obviously, you are trying to adapt the code from the section Examples ► Applications on the Documentation page for NotebookEvaluate.


Here is how it is supposed to work:




  1. Create a Notebook with your cells:


    nb = CreateDocument[{
    ExpressionCell[Defer[Print["SectorIOMarketChains"]], "Input",
    CellTags -> {"SectorIOMarketChains"}, ShowCellTags -> True],
    ExpressionCell[Defer[Print["DensityPlot"]], "Input", CellTags -> {"DensityPlot"},
    ShowCellTags -> True]

    }];


  2. In current Notebook create Buttons for evaluating tagged cells from that Notebook:


    myButton[nb_, tag_] := 
    Button["Evaluate " <> tag,
    NotebookEvaluate[nb, EvaluationElements -> {"Tags" -> {tag}}], Method -> "Queued"];
    Grid[{Map[myButton[nb, #] &, {"SectorIOMarketChains", "DensityPlot"}]}]



    screenshot





  3. Sequentially press the buttons, the results will appear in current Notebook:



    screenshot






When working with an existing Notebook, on the first step you should use NotebookOpen (possibly with the option Visible -> False if you don't want it to be displayed):


nb = NotebookOpen[filePath, Visible -> False];

Do not forget to close the invisible Notebook when it is no longer needed:


NotebookClose[nb]

You can get the list of currently opened Notebooks (including invisible) via Notebooks:


Notebooks[]




Note that NotebookEvaluate is a relatively old function, introduced when CellObject wasn't available. Similar (but not exactly the same) effect can be achieved with Cells and ToExpression:


ToExpression[NotebookRead[Cells[nb, CellTags -> {"SectorIOMarketChains"}]][[1, 1]]]


SectorIOMarketChains



You can see what ToExpression returns using its three-argument form:


ToExpression[
NotebookRead[Cells[nb, CellTags -> {"SectorIOMarketChains"}]][[1, 1]], StandardForm, Hold]



Hold[Print["SectorIOMarketChains"]]

Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...