Skip to main content

image processing - How do I transform a rasterized graphic's coordinates back to its original ListPlot data coordinates?


From this question I successfully made an elliptical fit for my data. However, when I try and collect the datapoints within the ellipse via this question the coordinates of my ellipse correspond to an ellipse of a rasterized image of my listplot data and not the original. How can I transform or scale the ellipse that fits the rasterized image to the original listplot.


Ok, with all that said heres an example.


data = RandomReal[NormalDistribution[], {100000, 2}]
p = ListPlot[data, ImageSize -> 4000];

f = FillingTransform@ColorNegate@Binarize@p // DeleteSmallComponents
{c, s, t} = 1 /. ComponentMeasurements[f, {"Centroid", "SemiAxes", "Orientation"}]
Show[Rasterize[p], Graphics[{Red, Rotate[Circle[c, s],t]}]]

where I get a nice image:


example data


however, the coordinates c, s, t of the ellipse are pixle coordiantes corresponding to the rasterized image rather than data coordinates.


So when I need the ellipses parameter to do any calculations I get bunk results.


The image processing approach would be the best as I am filtering out the most dense cluster of data.


Thanks so much.




Answer



(*Generate Data and fit*)
data1 = RandomReal[NormalDistribution[10, 1], {10^4}];(*test data*)
data2 = RandomReal[NormalDistribution[20, 5], {10^4}];(*test data*)
data = Transpose@{data1, data2};
r = RotationTransform[Pi/8];
data3 = r /@ data;

(*we need to specify PlotRange due to a kown bug in AbsoluteOptions[] *)
prange = {Min@#, Max@#} & /@ {First@#, Last@#} &@Transpose@data3;


p = ListPlot[data3, Axes -> None, PlotRange -> prange];
f = FillingTransform@ColorNegate@Binarize@p // DeleteSmallComponents;
{co, so, to} = 1 /. ComponentMeasurements[f, {"Centroid", "SemiAxes", "Orientation"}];

(*Transform Image to Graphic coordinates*)
c = Rescale[co[[#]], {1, ImageDimensions[f][[#]]}, prange[[#]]] & /@ {1, 2};
s = Rescale[so[[#]], {0, Norm@ImageDimensions@f}, {0, Norm@(Differences/@ prange)}] & /@ {1, 2};
t = -ArcTan@Rescale[Tan@to, {0, 1/Divide @@ ImageDimensions[f]},
{0, 1/First@(Divide @@ Differences /@ prange)}];

(* Replot graphic*)

{s1, s2} = s;
{cx, cy} = c;
f0 = Sqrt[s1 s1 - s2 s2];
f1 = {cx + f0 Cos[t], cy - f0 Sin[t]};
f2 = {cx - f0 Cos[t], cy + f0 Sin[t]};
r = 2 Sqrt[f0 f0 + s2 s2];

sd = Select[data3, EuclideanDistance[#, f1] + EuclideanDistance[#, f2] < r &];

Show[p, Graphics[{Red, PointSize[Large], Point@sd}], Axes -> True]

Mathematica graphics


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...