Skip to main content

calculus and analysis - Length of a curve parallel to a spline


I have constructed a BSplineFunction through a set of random points:


p = Table[{20 Cos[2 π t], 20 Sin[2 π t]} + RandomReal[{-15, 15}, 2],
{t, 0, 0.9, 0.1}]
f = BSplineFunction[p, SplineClosed -> True];


{{15.7336, -3.557}, {11.1177, -2.53343}, {15.4259, 19.1467}, {6.60292, 10.5131},
{-28.5053, 10.9099}, {-22.7909, -1.35239}, {-3.22756, -13.0483},
{-17.1309, -32.426}, {6.23965, -7.05847}, {25.0532, -25.0634}}

I then drew the spline and 3 curves parallel to it:


Show[ParametricPlot[Table[f[x] + {{0, 1}, {-1, 0}}.Normalize[f'[x]] * i,
{i, 0, 3}], {x, 0, 1}]]

spline and parallels


I next wanted to find the length of these curves, but the following command can only find the length of the spline, not the adjacent curves. It gives an error for the other curves.



Table[NIntegrate[Norm[D[f[x] + {{0, 1}, {-1, 0}}.Normalize[f'[x]]*i, x]],
{x, 0, 1}], {i, 0, 3}]

{148.521,(*Unevaluated Expression*),
(*Unevaluated Expression*),(*Unevaluated Expression*)}

Attempting to solve my problem, I found that my difficulty seems to be in getting Mathematica to calculate the derivative first before substituting in values during the integration step. E.g. this does not evaluate to a value:


D[f[x] + {{0, 1}, {-1, 0}}.Normalize[f'[x]], x] /. x -> 0.5
{23.4356 - 4.78553 Norm'[{28.2999, -155.368}],
-134.177 - 3.79751 Norm'[{28.2999, -155.368}]}


If my function was explicit, I know how to fix this, but given that my function isn't explicitly defined, I find my knowledge of Mathematica is lacking to fix this.


For reference if required, I am using version 10.2.



Answer



Combining the results from this answer and this answer, here is how to get the lengths of your parallel curves:


p = {{15.7336, -3.557}, {11.1177, -2.53343}, {15.4259, 19.1467}, {6.60292, 10.5131},
{-28.5053, 10.9099}, {-22.7909, -1.35239}, {-3.22756, -13.0483}, {-17.1309, -32.426},
{6.23965, -7.05847}, {25.0532, -25.0634}};
m = 3; (* degree *) n = Length[p];
fn[t_] = Table[BSplineBasis[{m, ArrayPad[Subdivide[n], m, "Extrapolated"]}, j - 1, t],

{j, n + m}].ArrayPad[p, {{0, m}, {0, 0}}, "Periodic"];

Table[NIntegrate[Sqrt[#.#] &[D[fn[t] - i #/Sqrt[#.#] &[Cross[fn'[t]]], t]], {t, 0, 1}],
{i, 0, 3}]
{148.52091182623133, 154.80408759110168, 161.08726314974254, 167.37043875503448}

Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1.