Skip to main content

differential equations - DSolve takes too much time


I have the following problem:


DSolve[D[l[w1, w2], w1] a w2 - D[l[w1, w2], w2] a w1 == 
l[w1, w2] + w1 + a^2 w2^2, l[w1, w2], {w1, w2}]


I expect DSolve to return a complete polynomial of second degree as a solution to this differential equation. Yet it is taking an awful lot of time to solve this. Why is it?


EDIT


I expect a solution like:


l = a1 w1 + a2 w2 + a11 w1^2 + a12 w1 w2 + a22 w2^2; 

Since:


h = D[l, w1] a w2 - D[l, w2] a w1 - l - w1 - a^2 w2^2; 
Solve[Table[CoefficientRules[h, {w1, w2}][[i]][[2]] == 0, {i, 1, 3}]]


Outputs:


{{a1 -> -1 - a*a2, a12 -> -(a11/a), a22 -> ((1 + 2*a^2)*a11)/(2*a^2)}, {a -> 0, a1 -> -1, a11 -> 0, a12 -> 0}}

EDIT 2


In the past edit I didn't add the assumption a>0. Indeed the verification turns a trivial solution. I've corrected this, and now we have a real solution with the following code.


Solve[-a11 - a*a12 == 0 && 
2*a*a11 - a12 - 2*a*a22 == 0 && -1 - a1 - a*a2 == 0 &&
a > 0 , {a11, a12, a1, a2, a22}, Reals]

Answer



Probably because DSolve is looking for a general solution, while a solution like l = a1 w1 + a2 w2 + a11 w1^2 + a12 w1 w2 + a22 w2^2 is far beyond general. For example, with the following code we can find another part of the general solution (The definition of DChange can be found here.):



neweqn = DChange[D[l[w1, w2], w1]*a*w2 - D[l[w1, w2], w2]*a*w1 == 
l[w1, w2] + w1 + a^2*w2^2, l[w1, w2] == L[w1*w2]]

(* (-a)*w1^2*Derivative[1][L][w1*w2] + a*w2^2*Derivative[1][L][w1*w2] ==
w1 + a^2*w2^2 + L[w1*w2] *)

DSolve[neweqn /. w1 -> W/w2, L@W, W] /. {L@W -> l[w1, w2], W -> w1 w2} // Simplify

Mathematica graphics


Notice this solution is still incomplete, it only represents solutions that satisfy $l(w_1,w_2)=L(w_1 w_2)$, yet it's already much more complicated than a polynomial. One can expect the complete solution for the PDE is even more complicated and hard to obtain at least for Mathematica.



Finally, I hate to admit it, but Maple does a better job on this PDE:


pdsolve([diff(l(w1,w2),w1)*a*w2-diff(l(w1,w2),w2)*a*w1 = l(w1,w2)+w1+a^2*w2^2],l(w1,w2))

(* {l(w1,w2) = (Intat(exp(-1/a*arctan(_a/(-_a^2+w1^2+w2^2)^(1/2)))*(-_a^2*a^2+(w1^2+w2^2)*a^2+_a)/a/(-_a^2+w1^2+w2^2)^(1/2),_a = w1)+_F1(w1^2+w2^2))*exp(1/a*arctan(w1/w2))} *)

enter image description here





Inspired by the form of the general solution given by Maple, I figured out how to obtain it fast with DSolve. We just need to transform to polar coordinate!:


neweqn = Assuming[{r > 0, -Pi < th < Pi}, 

DChange[D[l[w1, w2], w1] a w2 - D[l[w1, w2], w2] a w1 ==
l[w1, w2] + w1 + a^2 w2^2, {Sqrt[w1^2 + w2^2] == r, th == ArcTan[w1, w2]}, {w1,
w2}, {r, th}, l[w1, w2]]]

(* l[r, th] + r*(Cos[th] + a^2*r*Sin[th]^2) +
a*Derivative[0, 1][l][r, th] == 0 *)

DSolve[neweqn, l[r, th], {r, th}] /. {l[r, th] -> l[w1, w2], r -> Sqrt[w1^2 + w2^2],
th -> ArcTan[w1, w2]} // Simplify


(* {{l[w1, w2] -> (1/(
2 + 10 a^2 +
8 a^4))(4 a^3 (1 + a^2) w1 w2 - (1 + 4 a^2) (2 w1 + (a^2 + a^4) w1^2 +
a w2 (2 + a w2 + a^3 w2)) + a^2 (1 + a^2) (w1^2 + w2^2) Cos[2 ArcTan[w1, w2]]) +
E^(-(ArcTan[w1, w2]/a)) C[1][Sqrt[w1^2 + w2^2]]}} *)

Mathematica graphics


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...