Skip to main content

list manipulation - Bigrams and TF-IDF calculation



I want to create a bag of bigrams in a set of documents and calculate the TF-IDF vector of each document. To calculate the bigram of the text I used the following code: The small example of the data (each element in the list is a different document)


data = {"The food at snack is a selection of popular Greek dishes. 
The appetizer tray is good as is the Greek salad. We were underwhelmed with
the main courses. There are 4-5 tables here so it's
sometimes hard to get seated.","This little place in Soho is wonderful. I
had
a lamb sandwich and a glass of wine. The price shocked me for how small the
serving was, but then again, this is Soho. The staff can be a little snotty
and rude, but the food is great, just don't expect world-class service.",
"ordered lunch for 15 from Snack last Friday. On time, nothing

missing and the food was great. I have added it to the regular
company lunch list, as everyone enjoyed their meal."}

The way that I create the bigrams in the file (set of documents) and calculate the TF for each bigram in specific document:


bigram =
Table[
Merge[
<|First[#] <> " " <> Last[#] -> 1|> & /@
Partition[
StringSplit[StringReplace[data[[i]], PunctuationCharacter ->""]],

2, 1],
Total],
{i, 1, Length@data}]

The way that I calculate the frequency of the bigrams in the file (ITF):


bigramUniqe = <||>
Scan[(If[MissingQ[bigramUniqe[#]], AssociateTo[bigramUniqe, # -> 1],
AssociateTo[bigramUniqe, # -> (bigramUniqe[#] + 1)]]) &, bigram];

But in this way, I do not succeed to count the frequency of document that contains the specific bigrams( I have some issue with the level specification of the Associate). Anyway, I look for a more efficient way to implement this task.Thank in advance for any suggestions.




Answer



What do you think about skipping the StringJoin and storing a bigram as a pair of strings?


getbigrams[text_String] := Module[{words},
words =
StringSplit[
ToLowerCase[StringDelete[text, PunctuationCharacter]]];
Counts[Partition[words, 2, 1]]
]

That can save about 40 % of time:



data = ExampleData /@ ExampleData["Text"];

a = Table[
Merge[<|First[#] <> " " <> Last[#] -> 1|> & /@
Partition[
StringSplit[
StringReplace[ToLowerCase[data[[i]]],
PunctuationCharacter -> ""]], 2, 1], Total], {i, 1,
Length@data}]; // AbsoluteTiming // First


b = getbigrams /@ data; // AbsoluteTiming // First

Values[a] == Values[b]


7.62668


4.40748


True



Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]