Skip to main content

performance tuning - Making table of matrix product and efficiency


I want to make a table in which each element is a matrix product:


<< Developer`

n = 2;
m = 6;

matrix = Map[ToPackedArray[#] &, Table[Sin[1.0*i*j], {i, 1, m}, {j, 1, n}, {k, 1, n}]];

vector = {IdentityMatrix[n][[1]]}\[Transpose];

Do[Flatten[Table[ #1\[ConjugateTranspose].(matrix[[#2]].#1) &[vector, i], {i, 1, m}]], {ite, 1, 2*10^5}] // AbsoluteTiming
(*{7.430010, Null}*)


In the code above there are two important parts:


First part = Choosing one matrix from the lists of matrices matrix and multiply it by vector.


Second part = Multiplying vector\[ConjugateTranspose] by the result of the first part.


I thought if I convert matrix[[#2]].#1, the first part, into one matrix multiplication, it would be more efficient as instead of many multiplications I calculate all of them in one go:


matrix2 = ToPackedArray[Flatten[Table[matrix[[i]]\[Transpose], {i, 1, m}], 1]];

matrix2 is the desired matrix to do the next step. If you use matrix//MatrixForm, then both the matrices look like each other.


Do[x = matrix2.vector; Flatten[Table[ #1\[ConjugateTranspose].(x[[#2 ;; #2 + n - 1,All]]) &[vector, i], {i, 1, n*m, n}]], {ite, 1, 2*10^5}] // AbsoluteTiming
(*{9.080013, Null}*)


I had to still choose different parts of (matrix2.#1),first part, to multiply that part with #1\[ConjugateTranspose],second part.


As you see although I calculate all the matrix multiplications in the first part at once, it is slower. I thought it might be because of this part of code [[#2 ;; #2 + n - 1, All]] in which I had to choose different parts of the result. I tried:


Do[x = matrix2.vector; Flatten[Table[ (x[[#1 ;; #1 + n - 1, All]]) &[i], {i, 1, n*m, n}]], {ite, 1, 2*10^5}] // AbsoluteTiming
(*{5.290007, Null}*)

Do[Flatten[Table[ (matrix[[#2]].#1) &[vector, i], {i, 1, m}]], {ite, 1, 2*10^5}] // AbsoluteTiming
(*{4.630007, Null}*)

At each iteration for matrix2 I just do the calculation once but for that of matrix at each iteration there are 6 multiplications. In the below I remove the table for matrix2 and replace it with Do for matrix:


Do[x = matrix2.vector, {ite, 1, 2*10^5}] // AbsoluteTiming

(*{0.240000, Null}*)

Do[ Do[(matrix[[#2]].#1) &[vector, i], {i, 1, m}], {ite, 1, 2*10^5}] // AbsoluteTiming
(*{2.620004, Null}*)

Now the calculations for matrix2 are faster. Thus, I believe that choosing parts of matrix2.vector causes the calculation gets slower.


How can I overcome this bottleneck? How can I choose parts of a matrix faster?



Answer



You can increase the performance by transposing your matrix and using Dot without explicit [[...]]


<< Developer`

n = 2;
m = 6;

matrix = Table[Sin[1.0*i*j], {i, m}, {j, n}, {k, n}];
matrix3 = ToPackedArray@Transpose@matrix;

vector = N@Transpose@{IdentityMatrix[n]};
vectorHC = ConjugateTranspose@vector;

Flatten[vectorHC.matrix3.vector, {{1, 3, 2, 4, 5}}] ==

Flatten@Table[#1\[ConjugateTranspose].(matrix[[#2]].#1) &[vector, i], {i, 1, m}]
(* True *)

Do[Flatten[vectorHC.matrix3.vector, {{1, 3, 2, 4, 5}}], {ite, 10^5}] // AbsoluteTiming
(* {0.894130, Null} *)

Do[Flatten[Table[#1\[ConjugateTranspose].(matrix[[#2]].#1) &[vector, i], {i, m}]],
{ite, 10^5}] // AbsoluteTiming
(* {8.979821, Null} *)


Converting vector to a floating-point array (N[...]) also increase the performance a bit.


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...