Skip to main content

symbolic - How to do algebra on summations of variable expressions?


Is there any easy, general way to handle algebra on variable Sums? For examples, Gaussian Mixtures or Fourier Series:


gau[x_, m_, var_] := (E^(-(x - m)^2/(2 var)))/Sqrt[2 Pi*var];
f[x_] := Sum[gau[x, m[[i]], v[[i]]], {i, 1, n}];
ga[x_] := Sum[a[[m]]*Sin[m*x], {m, 0, Infinity}] // Inactive;
gb[x_] := Sum[b[[m]]*Sin[m*x], {m, 0, Infinity}] // Inactive;

$$f[x]=\sum _{i=1}^n \frac{e^{-\frac{(x-m[[i]])^2}{2 v[[i]]}}}{\sqrt{2 \pi } \sqrt{v[[i]]}}$$


It's easy on paper to do things like integrate this expression:


$$\int_{-\infty }^{\infty } \left(\sum _{i=1}^n \frac{e^{-\frac{(x-m[[i]])^2}{2 v[[i]]}}}{\sqrt{2\pi } \sqrt{v[[i]]}}\right) \, dx = \sum _{i=1}^n 1 = n$$



...or to integrate f[x]^2 analytically:


$$\int_{-\infty }^{\infty } \left(\sum _{i=1}^n \frac{e^{-\frac{(x-m[[i]])^2}{2 v[[i]]}}}{\sqrt{2\pi } \sqrt{v[[i]]}}\right){}^2 \, dx = \frac{1}{2 \sqrt{\pi }} \sum _{i=1}^n \frac{1}{\sqrt{v[[i]]}}+\sum _{i=2}^n \left(\sum _{j=1}^{i-1} \frac{e^{-\frac{(m[[i]]-m[[j]])^2}{2(v[[i]]+v[[j]])}}}{\sqrt{2 \pi } \sqrt{v[[i]]+v[[j]]}}\right) $$


(Sorry, no code for these results; I did them by hand and wrote them in TeX)


In an Answer below, @chris posted code to get MMa to handle just these two specific instances.


MapAt[Integrate[#, {x, -Infinity, Infinity}] &, f[x],    1] // PowerExpand

tt = f[x]^2 /. Power[Sum[a__, b__], 2] :> sum[a (a /. i -> j) // Release, b, b /. {i -> j}]

MapAt[Integrate[#, {x, -Infinity, Infinity}] &, tt, 1] /.sum -> Sum // PowerExpand


But we would have to write new pattern/substitution code if the index was other than "i" or if we wanted to Integrate any higher powers of f or to do other operations on the Sum.


Other examples that would require new code:


exp1 = Integrate[ga[x]*gb[x],{x,0,2Pi}];

equals (derived by hand because MMa pooped out)


Pi*Sum[a[[m]]*b[[m]], {m, 0, Infinity}]

exp2 = Integrate[ga[x]^3,{x,0,2Pi}];

equals (also derived by hand)



(Pi/2)*Sum[Sum[a[[m]]*a[[n]]*(a[[m + n]] + a[[m - n]]), {n, 1, m - 1}], {m, 2,Infinity}]

Is there any way to handle algebraic Sums so that we don't have to anticipate and code around every conceivable math function we might do on them?


(Sorry for posting TeXForm, but no one understood what I was asking for the first time I tried to post this question.)



Answer



As far as I know, there is no easy, general way to handle this kind of algebra with Sum expressions.


What follows is an attempt to use replacement rules to handle a wider range of cases than chris's example. I don't consider it to be the canonical answer that is required, but perhaps someone might be able to use it as a starting point.


I use Inactive on Sum to stop Mathematica from attempting to evaluate the sums at every stage. I've also used Indexed in place of Part. So getting started:


sum = Inactive[Sum];
SetOptions[Integrate, GenerateConditions -> False];


gau[x_, m_, var_] := (E^(-(x - m)^2/(2 var)))/Sqrt[2 Pi*var]
f[x_] := sum[gau[x, Indexed[m, i], Indexed[v, i]], {i, 1, n}]
ga[x_] := sum[Indexed[a, m]*Sin[m*x], {m, 0, Infinity}]
gb[x_] := sum[Indexed[b, m]*Sin[m*x], {m, 0, Infinity}]

The first thing to note is that by using Indexed we avoid getting those part specification errors. Also it displays more nicely:


Activate@f[x]

enter image description here



Now some rules...


reindex = s : sum[_, {i_, __}] :> (s /. i -> Unique@i);

unpower = s_sum^p_Integer :> Times @@ Table[s /. reindex, {p}];

expand = sum[e1_, i1__] sum[e2_, i2__] :> sum[e1 e2, i1, i2];

distribute = Integrate[sum[e_, s__], i__] :> sum[Integrate[e, i], s];

niceindex[expr_] := expr /. (Thread[# -> Take[{i, j, k, l}, Length[#]]] &@

DeleteDuplicates[Cases[expr, s_Symbol /; SymbolName[s]~StringMatchQ~"*$*" :> s, -1]]);

doitall[expr_] := expr /. unpower /. reindex //. expand /. distribute // niceindex;

Description of the rules:




  • reindex simply replaces the summation index by a unique symbol. This will allow us to expand powers and products of sums without getting colliding symbols.





  • unpower expands integer powers of sums into explicit products.




  • expand expands a product of sums into a sum of products.




  • distribute distributes Integrate over Sum, i.e. it converts the integral of a sum into a sum of integrals.




  • niceindex replaces the unique symbols generated by reindex with plain i,j,k,l. As written this assumes that there are no more than four summation indices required in the final result, and that the symbols i,j,k,l are not in use. These are both dangerous assumptions! Ideally you should not use this function (or write a better version), but personally I find summation indices like i$123456 hard to read.





  • doitall applies all the rules in an attempt to transform the expression.




So here are a couple of examples. For this one we only need distribute:


Integrate[f[x], {x, -∞, ∞}] /. distribute

enter image description here


Having done the integration we can now Activate the sum to get the desired result (I've also applied the assumption that $v_i$ is positive)



Simplify[%, Indexed[v, i] > 0] // Activate

n

For the next two I've used doitall to apply the full set of transformations:


Integrate[f[x]^2, {x, -∞, ∞}] // doitall

enter image description here


Integrate[ga[x] gb[x], {x, 0, 2 Pi}] // doitall


enter image description here


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...