Skip to main content

image processing - Generating animations of clouds with Mathematica



I'd like to generate some visually-pleasing animations of clouds, fog or smoke with Mathematica. My idea of "visually-pleasing" is along the lines of one of the images on the Wikipedia article for random Perlin noise.


enter image description here



Image description: "Perlin noise rescaled and added into itself to create fractal noise."



Based on the example MATLAB code found here, I wrote the following function in Mathematica:


perlin3D[n_, t_, r_] := Module[{s, w, i, d},
s = ConstantArray[0., {t, n, n}];
w = n;
i = 0;

While[w > 3,
i++;
d = GaussianFilter[RandomReal[{0, 1}, {t, n, n}], r*i];
s = s + i*d;
w = w - Ceiling[w/2 - 1];
];
s = (s - Min@s)/(Max@s - Min@s)
]

The results are OK, but not as good as I'd like. It's not as smooth as the example image above, nor is the image contrast as strong.



(* Generate 100 frames of 128*128 pixels *)
res = perlin3D[128, 100, 4];
imgres = Image@# &/@ res;
ListAnimate[imgres, 16]

enter image description here


How can I improve the quality of the generation using Mathematica, and is there anyway to speed it up for larger and/or longer animations?


Update


The contrast can be improved a little, as pointed out by N.J.Evans in a comment, by removing the first and last few frames before scaling, namely s = s[[r*i ;; -r*i]]. However it's still not as "fog-like" as the Wikipedia example.


enter image description here




Answer



This is a 2D Gaussian random field with a 1/k2 spectrum and linear dispersion ωk. I clip the field to positive values and square root it to give an edge to the "clouds".


n = 256;
k2 = Outer[Plus, #, #] &[RotateRight[N@Range[-n, n - 1, 2]/n, n/2]^2];

spectrum = With[{d := RandomReal[NormalDistribution[], {n, n}]},
(1/n) (d + I d)/(0.000001 + k2)];
spectrum[[1, 1]] *= 0;

im[p_] := Clip[Re[InverseFourier[spectrum Exp[I p]]], {0, ∞}]^0.5


p0 = p = Sqrt[k2];

Dynamic @ Image @ im[p0 += p]

enter image description here


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]