Skip to main content

DSolve leads to an equation that is different from paper solution


I'm following the method in the two images in an attempt to obtain a value for β. I know that there's a mistake in (4.36) from here so I used Mathematica's solution to continue the solution. I used the following code:


ClearAll[Y, y, \[Mu] , k, a, \[Theta]]
sol = DSolve[{Y''[y] - ((\[Mu] k \[Pi])/a)^2 Y[y] == (-8 \[Theta])/(
k \[Pi]), Y[-b/2] == 0, Y[b/2] == 0}, Y, y];
Y2[y_] = FullSimplify[ExpToTrig[Y[y] /. sol[[1]]]];
\[Phi][x_, y_] = Y2[y]*Sin[(k \[Pi])/a x];
gj = 2 \!\(
\*SubsuperscriptBox[\(\[Integral]\),

FractionBox[\(-b\), \(2\)],
FractionBox[\(b\), \(2\)]]\(\((
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(a\)]\[Phi][x,
y] \[DifferentialD]x)\) \[DifferentialD]y\)\);
a = b; Gx = Gy; \[Mu] = Sqrt[Gx/Gy];
\[Beta] = gj/(Gx a b^3)

to get that β=32θsin2(πk2)(πbk2btanh(πk2))π5bGyk5

According to the solution in the images and my understanding, β is a a factor so setting a=b and Gy=Gx should lead to an elimination of those terms, i.e. they divide and become 1 like in the case of the c factor in the paper, but that is not the case in the solution using Mathematica. There are an extra b, θ, and Gy that cannot be cancelled with a and Gx.


When the author of the paper does N[Sum[\[Beta], {k, 1, 60, 2}]] (they didn't use Mathematica but it's to get the point across) setting c=1 they the following result


Results from simulation compared to analytical



which agrees with simulations. When I run N[Sum[\[Beta], {k, 1, 60, 2}]] I get 0.140577Gy which will give me a different answer to the author of the paper.


This is the 4th time that this happens. I've been using several techniques and following various similar solutions but I can't seem to get the equations from Mathematica and from the papers to agree. Is there something wrong with my code that I'm not seeing? Can I rearrange my equation for β so that I won't end up with an extra Gy in the solution? Or is it simply that the author made a mistake?


The governing equation for Prandtl’s stress function ϕ(x,y) is ϕxx+GzyGzxϕyy=2θ

with BCs ϕ(±a/2,y)=ϕ(x,±b/2)=0.


Page 1 Page 2




Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]