Skip to main content

computational geometry - RegionIntersection puzzle


I am using RegionIntersection[] to intersect two rectangles, phrased as Polygon[]s:




BugRegInt


RegionIntersection[] returns an incorrect result (the green region above; detail below), and issues a series of error messages:


Errors



Here is the region returned as the intersection, which is not correct (it should be a quadrilateral):
Polygon[{{0.407273, 0.650444}, {0.509656, -0.0200315}, {0.998507, 
0.0546171}, {0.640904, 0.767621}, {0.998507, 0.0546171}}]

Here it is as a line drawing:




PentQuad


Here is the originating call that produces the incorrect intersection:


RegionIntersection[

Polygon[{{0.5096555454081809`, -0.02003146973392257`}, \
{0.9985073695269602`, 0.05461714932464575`}, {0.6966031018052412`,
2.0316992956026936`}, {0.2077512776864619`,
1.9570506765441251`}}] ,
Polygon[{{0.9985073695269602`,
0.05461714932464575`}, {0.6409040075686694`,
0.767621034809768`}, {-1.1468443539373534`, \
-0.12901478643123643`}, {-0.7892409919790626`, -0.8420186719163586`}}]
]


Can anyone see what's going on?



Answer



This is a bug that has been fixed in the development version. For a possible workaround, use exact coordinates, for example


sp = Function[p, SetPrecision[p, Infinity]];

ri = RegionIntersection[
sp@Polygon[{{0.5096555454081809`, -0.02003146973392257`},
{0.9985073695269602`, 0.05461714932464575`},
{0.6966031018052412`, 2.0316992956026936`},
{0.2077512776864619`, 1.9570506765441251`}}],

sp@Polygon[{{0.9985073695269602`, 0.05461714932464575`},
{0.6409040075686694`, 0.767621034809768`},
{-1.1468443539373534`, -0.12901478643123643`},
{-0.7892409919790626`, -0.8420186719163586`}}]];

N[ri]

(* Polygon[{{0.40727258068338046`, 0.6504444171024929`},
{0.5096555454081809`, -0.02003146973392257`},
{0.9985073695269602`, 0.05461714932464575`},

{0.6409040075686694`, 0.767621034809768`}}] *)

Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...