Skip to main content

plotting - How to plot a rotated ellipse using `ParametricPlot`?



I'm plotting the von Mises yield surface using CountourPlot and ParametricPlot.


With ContourPlot I get this nice rotated ellipse:


ContourPlot[Sqrt[sig1^2 + sig2^2 - sig1 sig2] - 200 == 0, {sig1, -300, 300}, {sig2, -300, 300}]

enter image description here


Now i need to find the parametric equations to plot a rotated ellipse similar to the ellipse above, but this time using the function ParametricPlot.


I can plot an ellipse with parametric, but it's not rotated:


ParametricPlot[{200 Cos[theta], 100 Sin[theta]}, {theta, 0 , 2 Pi}]

EDIT:



If the real von Mises yield surface is ploted (using ContourPlot) and compared with the plot obtaned from ParametricPlot:


contourplot = 
ContourPlot[
Sqrt[sig1^2 + sig2^2 - sig1 sig2] - 200 == 0, {sig1, -300,
300}, {sig2, -300, 300}];
gamma = Pi/4;
a = 300;
b = a/2;
pmplot = ParametricPlot[{(a Cos[theta] Cos[gamma] -
b Sin[theta] Sin[gamma]),

a Cos[theta] Sin[gamma] + b Sin[theta] Cos[gamma]}, {theta, 0 ,
2 Pi}, PlotStyle -> {Thick, Red, Dashed}];
Show[contourplot, pmplot]

enter image description here


we can see that the plots are not the same.


How can i find the values of a and b that make the ellipses the same?



Answer



You can use a RotationTransform to find the equation of our rotated function


RotationTransform[α][{a Cos[θ], b Sin[θ]}]



  {a Cos[α] Cos[θ] - b Sin[α] Sin[θ], a Cos[θ] Sin[α] + b Cos[α] Sin[θ]}

Now you can plot it as any other equation.


Manipulate[
ParametricPlot[
RotationTransform[α][
{
200 Cos[theta],

100 Sin[theta]
}
]
, {theta, 0, 2 Pi}
, PlotRange -> {{-300, 300}, {-300, 300}}
]
, {α, -π, π}
]

enter image description here



Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

plotting - Magnifying Glass on a Plot

Although there is a trick in TEX magnifying glass but I want to know is there any function to magnifying glass on a plot with Mathematica ? For example for a function as Sin[x] and at x=Pi/6 Below, this is just a picture desired from the cited site. the image got huge unfortunately I don't know how can I change the size of an image here! Answer Insetting a magnified part of the original Plot A) by adding a new Plot of the specified range xPos = Pi/6; range = 0.2; f = Sin; xyMinMax = {{xPos - range, xPos + range}, {f[xPos] - range*GoldenRatio^-1, f[xPos] + range*GoldenRatio^-1}}; Plot[f[x], {x, 0, 5}, Epilog -> {Transparent, EdgeForm[Thick], Rectangle[Sequence @@ Transpose[xyMinMax]], Inset[Plot[f[x], {x, xPos - range, xPos + range}, Frame -> True, Axes -> False, PlotRange -> xyMinMax, ImageSize -> 270], {4., 0.5}]}, ImageSize -> 700] B) by adding a new Plot within a Circle mf = RegionMember[Disk[{xPos, f[xPos]}, {range, range/GoldenRatio}]] Show...