Skip to main content

differential equations - NDSolve runs out of memory


I need to solve a second order ODE numerically. The ODE depends on two parameters (a,b). Things work fine when 'a' is small, but for large 'a' the solutions are oscillating rapidly and Mathematica takes a long time to solve or eventually just runs out of memory.


I need to integrate over quite a large range (10,000) and that is part of the problem, but I actually only need the value of the InterpolatingFunction produced at the end point. Is there a way to tell Mathematica I just want this last point? And not store the rest (very large) InterpolatingFunction in memory? i.e. just integrate so far, take that point use as ICs for next leg, then integrate to next pt, take that as IC and integrate onwards,etc...


Or just some other strategy for using NDSolve with such highly oscillatory solutions.


Some definitions:


M=1;
rstar[r_] := r + 2 M Log[r/(2 M) - 1];

$MinPrecision = 45;
wp = $MinPrecision;
ac = $MinPrecision - 8;
λ[l_] = l (l + 1);
rinf = 10000;
rH = 200001/100000;
nH = 200;

The ODE is:


eq[ω_, l_] := Φ''[r] + (2 (r - M))/(

r (r - 2 M)) Φ'[
r] + ((ω^2 r^2)/(r - 2 M)^2 - λ[l]/(
r (r - 2 M))) Φ[r] == 0

Without going into detail about why I have these initial conditions, they are :


HorizonICs[l_?IntegerQ, ω_?NumericQ] := 
Module[{ΦinrH, dΦinrH},
Clear[b];
b[0] = 1; b[-1] = 0; b[-2] = 0;
b[n_] :=

b[n] = Simplify[
1/(2 n (n - 4 I ω)) (-2 I ω b[-2 + n] +
2 I n ω b[-2 + n] + l b[-1 + n] + l^2 b[-1 + n] +
n b[-1 + n] - n^2 b[-1 + n] - 4 I ω b[-1 + n] +
8 I n ω b[-1 + n])];
uintrunc[r_, n_] := Sum[b[i] (r - 2 M)^i, {i, 0, n}];
ΦinrH = (Exp[-I ω rstar[rH]] uintrunc[rH, nH])/(
2 M);
dΦinrH =
D[(Exp[-I ω rstar[r]] uintrunc[r, nH])/(2 M), r] /.

r -> rH;
]

Solve as


ΦinExt[ωω_ , 
l_] := ΦinExt[ωω, l] = Φ /.
NDSolve[{eq[ωω, l], Φ[rH] ==
N[HorizonICs[l, ωω][[1]], wp], Φ'[
rH] == N[HorizonICs[l, ωω][[2]],
wp]}, Φ, {r, rH, rinf}, WorkingPrecision -> wp,

AccuracyGoal -> ac, MaxSteps -> ∞,
Method -> "StiffnessSwitching"][[1]];

You can also look for another solution that has the property of being simple near infinity and we set the ICs there. This is the particular solution that seems to be really really slow and causes memory crash.


Some definitions:


M = 1;
r0 = 5/2;
rstar[r_] := r + 2 M Log[r/(2 M) - 1];
$MinPrecision = 45;
wp = $MinPrecision;

ac = $MinPrecision - 8;
λ[l_] = l (l + 1);
rinf = 10000;
ninfphase =
50;

Set init conditions:


Infinitycs = Module[{n = ninfphase, c}, 
Clear[c];
veqexp =

CoefficientList[
Series[(-2 - l r - l^2 r + 2 (r + I r^3 ω)
\!\(\*SuperscriptBox["v", "′",
MultilineFunction->None]\)[r] + (-2 + r) r^2
\!\(\*SuperscriptBox["v", "′",
MultilineFunction->None]\)[r]^2 + (-2 + r) r^2
\!\(\*SuperscriptBox["v", "′′",
MultilineFunction->None]\)[r])/
r /. {v'[r_] :> Sum[-i c[i]/r^(i + 1), {i, 1, n}],
v''[r_] :>

Sum[i (i + 1) c[i]/r^(i + 2), {i, 1, n}]}, {r, ∞,
n - 1}], r^-1];
Do[c[i] = c[i] /. Simplify[Solve[veqexp[[i]] == 0, c[i]][[1]]];
Print, {i, 1, n}] ;
Table[c[i], {i, 1, n}]];

InfinityICs[ll_?IntegerQ, ωω_?NumericQ] := Module[{c2},
Do[c2[i] =
Infinitycs[[i]] /. {l -> ll, ω -> ωω}, {i, 1,
ninfphase}];

vtrunc = Sum[c2[i]/r^i, {i, 1, ninfphase}];
init = 1/r Exp[I ωω rstar[r] + vtrunc] /. r -> rinf;
dinit =
D[1/r Exp[I ωω rstar[r] + vtrunc], r] /. r -> rinf;
Clear[c2];
{init, dinit}]

Solve it


Φout[ωω_, 
l_] := Φout[ωω, l] = Φ /.

Block[{$MaxExtraPrecision = 100},
NDSolve[{eq[ωω, l], Φ[rinf] ==
N[InfinityICs[l, ωω][[1]], wp], Φ'[
rinf] ==
N[InfinityICs[l, ωω][[2]],
wp]}, Φ, {r, rinf, r0}, WorkingPrecision -> wp,
AccuracyGoal -> ac, MaxSteps -> ∞]][[1]];

Answer




I need to integrate over quite a large range (10,000) and that is part of the problem, but I actually only need the value of the InterpolatingFunction[] produced at the end point. Is there a way to tell Mathematica I just want this last point?




One way to go about it is to have the start and end of the integration interval be identical. Consider the following:


y[5] /. First @ NDSolve[{y'[x] == y[x] Cos[x + y[x]], y[0] == 1}, y, {x, 5, 5}]
0.07731217497157500942

To see that the approach saves space, here's a comparison:


yi = y /. First@NDSolve[{y'[x] == y[x] Cos[x + y[x]], y[0] == 1}, y, {x, 5, 5}];
ByteCount[yi]
1296


yn = y /. First@NDSolve[{y'[x] == y[x] Cos[x + y[x]], y[0] == 1}, y, {x, 0, 5}];
ByteCount[yn]
3288

Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

dynamic - How can I make a clickable ArrayPlot that returns input?

I would like to create a dynamic ArrayPlot so that the rectangles, when clicked, provide the input. Can I use ArrayPlot for this? Or is there something else I should have to use? Answer ArrayPlot is much more than just a simple array like Grid : it represents a ranged 2D dataset, and its visualization can be finetuned by options like DataReversed and DataRange . These features make it quite complicated to reproduce the same layout and order with Grid . Here I offer AnnotatedArrayPlot which comes in handy when your dataset is more than just a flat 2D array. The dynamic interface allows highlighting individual cells and possibly interacting with them. AnnotatedArrayPlot works the same way as ArrayPlot and accepts the same options plus Enabled , HighlightCoordinates , HighlightStyle and HighlightElementFunction . data = {{Missing["HasSomeMoreData"], GrayLevel[ 1], {RGBColor[0, 1, 1], RGBColor[0, 0, 1], GrayLevel[1]}, RGBColor[0, 1, 0]}, {GrayLevel[0], GrayLevel...