Skip to main content

fitting - Fit a function to data so that fit is always equal or less than the data


I have a set of measurement data and I try to fit there a function (a Exp[b x] + c Exp[d x] - o). I have two problems:



  • The fit function does not converge nor after $500$ iterations.


  • The fit function always has to be equal or less than the data points.


Thank you for your help!


fitdata = {{-0.826333, 9.72503}, {-0.796121, 9.61975}, {-0.765909, 8.25744},
{-0.735697, 7.40448}, {-0.705485, 5.38543}, {-0.675273, 5.15899},
{-0.645061, 4.9356}, {-0.614848, 4.67804}, {-0.584636, 4.28955},
{-0.554424, 4.73144}, {-0.524212, 4.93957}, {-0.494, 4.80621},
{-0.463788, 5.77301}, {-0.433576, 3.39416}, {-0.403364, 1.73309},
{-0.373152, 1.4862}, {-0.342939, 1.4212}, {-0.312727, 1.49505},
{-0.282515, 1.35071}, {-0.252303, 1.28845}, {-0.222091, 1.25183},

{-0.191879, 1.43158}, {-0.161667, 1.39557}, {-0.131454, 1.40259},
{-0.101242, 1.36108}, {-0.0710303, 1.2265}, {-0.0408181, 1.23474},
{-0.0106061, 1.24481}, {0.0196061, 1.26526}, {0.0498182, 1.32446},
{0.0800303, 1.31866}, {0.110242, 1.35345}, {0.140455, 1.45935},
{0.170667, 1.58142}, {0.200879, 1.64947}, {0.231091, 1.72851},
{0.261303, 1.79931}, {0.291515,1.53534}, {0.321727, 1.76849},
{0.351939, 2.56439}, {0.382152, 3.65875}, {0.412364, 1.30584},
{0.442576, 2.4179}, {0.472788, 3.02307}, {0.503, 1.58539},
{0.533212, 1.45324}, {0.563424, 1.4743}, {0.593636, 1.42791},
{0.623849, 1.44165}, {0.654061, 1.56433}, {0.684273, 1.68152},

{0.714485, 2.1933}, {0.744697, 2.30194}, {0.774909, 2.29156},
{0.805121, 2.62207}, {0.835333, 3.09906}, {0.865546, 3.17169},
{0.895758, 4.08508}, {0.92597, 7.48046}, {0.956182, 4.48303},
{0.986394, 4.11621}, {1.01661, 4.18457}, {1.04682, 4.72107},
{1.07703, 5.77667}, {1.10724, 6.35589}, {1.13745, 6.41082},
{1.16767, 7.43164}, {1.19788, 9.28222}};



@ All - The bigger the choice, the harder it is to choose. Thank you for incredible nice and quick answers!



Answer




This answer provides two solutions both use Quantile regression.




  1. The first uses sort of brute force fitting with a family of curves.




  2. The second is similar to the one by Jack LaVigne, but uses QuantileRegressionFit on the second step, which in this case seems to be more straightforward.




This command loads the package QuantileRegression.m used below:



Import["https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/master/QuantileRegression.m"]

1. QuantileRegressionFit only


Generate a family of functions:


funcs = Table[Exp[k*x], {k, -6, 6, 0.002}];
Length[funcs]

(* 6001 *)

Do Quantile regression fit with the family of functions:



qfunc = First@QuantileRegressionFit[fitdata, funcs, x, {0.01}]

(* 0. + 0.0125232 E^(-5.398 x) + 0.0930724 E^(-5.392 x) +
0.232695 E^(0.2 x) + 0.511794 E^(0.214 x) + 0.039419 E^(4.336 x) *)

and visualize:


Show[
ListPlot[fitdata, PlotStyle -> Black, PlotRange -> All],
Plot[qfunc, {x, -1, 1.5}, PlotStyle -> Red, PlotRange -> All]]


enter image description here


The found fitted function satisfies the condition to be less or equal of the data points, but it is made of too many Exp terms. So the next step is to reduce the number of Exp terms to two as required in the question.


We can visually evaluate the contribution of each of the terms in the found fit:


Plot[Evaluate[(List @@ qfunc)/qfunc], {x, -1, 1.5}, PlotRange -> All, 
PlotLegends -> (List @@ qfunc)]

enter image description here


We pick two of the terms (plus the intercept) and call QuantileRegressionFit again:


qfunc2 = 
First@QuantileRegressionFit[fitdata,

Prepend[(List @@ qfunc)[[{3, -1}]], 1], x, {0}]

(* 0.658637 + 0.105279 E^(-5.392 x) + 0.0414842 E^(4.336 x) *)

Show[ListPlot[fitdata, PlotStyle -> Black, PlotRange -> All],
Plot[qfunc2, {x, -1, 1.5}, PlotStyle -> Red, PlotRange -> All]]

enter image description here


2. NonlinearModelFit model followed by QuantileRegressionFit


First we find a model with the required functions:



nlm = NonlinearModelFit[fitdata, 
a*Exp[b*x] + c*Exp[d*x] + o, {{a, 0.1}, {b, 3}, {c, 0.3}, {d, -4}, {o, 1}}, x]

nlm["BestFitParameters"]

(* {a -> 0.127629, b -> 3.38374, c -> 0.310767, d -> -4.07292,
o -> 1.02299} *)

Show[ListPlot[fitdata, PlotStyle -> Black],
Plot[nlm[x], {x, -1, 1.5}, PlotStyle -> Red]]


enter image description here


Using the model functions:


{Exp[b*x], Exp[d*x]} /. 
Cases[nlm["BestFitParameters"], HoldPattern[(b | d) -> _]]

(* {E^(3.38374 x), E^(-4.07292 x)} *)

find the quantile regression curve that is below the data points (0. quantile):


qfunc = 

First@QuantileRegressionFit[
fitdata, {1, Exp[b*x], Exp[d*x]} /.
Cases[nlm["BestFitParameters"], HoldPattern[(b | d) -> _]],
x, {0.0}]

(* 0. + 0.303621 E^(-4.07292 x) + 0.13403 E^(3.38374 x) *)

Plot the result:


Show[
ListPlot[fitdata, PlotStyle -> Black, PlotRange -> All],

Plot[qfunc, {x, -1, 1.5}, PlotStyle -> Red, PlotRange -> All]]

enter image description here


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

dynamic - How can I make a clickable ArrayPlot that returns input?

I would like to create a dynamic ArrayPlot so that the rectangles, when clicked, provide the input. Can I use ArrayPlot for this? Or is there something else I should have to use? Answer ArrayPlot is much more than just a simple array like Grid : it represents a ranged 2D dataset, and its visualization can be finetuned by options like DataReversed and DataRange . These features make it quite complicated to reproduce the same layout and order with Grid . Here I offer AnnotatedArrayPlot which comes in handy when your dataset is more than just a flat 2D array. The dynamic interface allows highlighting individual cells and possibly interacting with them. AnnotatedArrayPlot works the same way as ArrayPlot and accepts the same options plus Enabled , HighlightCoordinates , HighlightStyle and HighlightElementFunction . data = {{Missing["HasSomeMoreData"], GrayLevel[ 1], {RGBColor[0, 1, 1], RGBColor[0, 0, 1], GrayLevel[1]}, RGBColor[0, 1, 0]}, {GrayLevel[0], GrayLevel...