Skip to main content

numerical integration - highly oscillatory integral



Hi am trying to compute the following integral in Mathematica:


    NIntegrate[(Sign[Cos[q]] Sqrt[Abs[Cos[q]]])/(q+100),{q,0,Infinity}]

But when I run that command I get the following error:


    NIntegrate::ncvb: NIntegrate failed to converge to prescribed 
accuracy after 9 recursive bisections in q near {q} = {6.3887*10^56}.
NIntegrate obtained -317.031 and 171.60663912222586` for the integral
and error estimates.

Is there a way to solve this issue? Thanks




Answer



Here's a manual implementation of the extrapolating oscillatory strategy. NIntegrate balks at trying it because the cosine is buried inside other functions.


ClearAll[psum];
psum[i_?NumberQ, opts___] :=
NIntegrate[(Sign[Cos[x]] Sqrt[Abs[Cos[x]]])/(x + 100),
{x, (i + 1/2) π, (i + 3/2) π}, opts];

res = NSum[psum[i], {i, 0, ∞},
Method -> {"AlternatingSigns", Method -> "WynnEpsilon"},
"VerifyConvergence" -> False] +

NIntegrate[(Sign[Cos[x]] Sqrt[Abs[Cos[x]]])/(x + 100), {x, 0, (1/2) π}]
(*
0.00010967(-)
*)

This agrees with Chip Hurst's result to almost 5 digits. But the method is reasonably quick, so we can examine the convergence as the WorkingPrecision (and therefore the PrecisionGoal) is raised:


ClearAll[res];
mem : res[wp_: MachinePrecision] := mem =
NSum[psum[i, WorkingPrecision -> wp], {i, 0, ∞},
Method -> {"AlternatingSigns", Method -> "WynnEpsilon"},

"VerifyConvergence" -> False, WorkingPrecision -> wp] +
NIntegrate[(Sign[Cos[x]] Sqrt[Abs[Cos[x]]])/(x + 100),
{x, 0, (1/2) π}, WorkingPrecision -> wp];

Table[res[wp], {wp, 16, 40, 8}]
(*
{0.0001096696058468,
0.000109676059727856341260,
0.00010967605972782927874728238851,
0.0001096760597278292787470847687426733221}

*)

% // Differences
(*
{6.4538811*10^-9, -2.7062513*10^-17, -1.9761977*10^-25}
*)

At each step we extend the number of digits that agree, and we can see that the result seems reliable.




Alternatively, one can multiply and divide by cosine, which enables NIntegrate to use the "ExtrapolatingOscillatory" strategy. It's a bit slower because it introduces (integrable) singularities in the non-oscillatory part of the integrand, but again we get similar results.



ClearAll[res2];
mem : res2[wp_: MachinePrecision] := mem =
NIntegrate[Cos[q] (1/Sqrt[Abs[Cos[q]]])/(q + 100), {q, 0, Infinity},
Method -> "ExtrapolatingOscillatory",
MaxRecursion -> Ceiling[10 + 1.5 wp], (* increase in MaxRecursion for singularities *)
WorkingPrecision -> wp]

res2[]
(*
0.000109673

*)

Table[res2[wp], {wp, 16, 40, 8}]
(*
{0.0001096731867831,
0.000109676059727866251185,
0.00010967605972782927874731895632,
0.0001096760597278292787470847687424806474}
*)

Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...