Skip to main content

numerical integration - highly oscillatory integral



Hi am trying to compute the following integral in Mathematica:


    NIntegrate[(Sign[Cos[q]] Sqrt[Abs[Cos[q]]])/(q+100),{q,0,Infinity}]

But when I run that command I get the following error:


    NIntegrate::ncvb: NIntegrate failed to converge to prescribed 
accuracy after 9 recursive bisections in q near {q} = {6.3887*10^56}.
NIntegrate obtained -317.031 and 171.60663912222586` for the integral
and error estimates.

Is there a way to solve this issue? Thanks




Answer



Here's a manual implementation of the extrapolating oscillatory strategy. NIntegrate balks at trying it because the cosine is buried inside other functions.


ClearAll[psum];
psum[i_?NumberQ, opts___] :=
NIntegrate[(Sign[Cos[x]] Sqrt[Abs[Cos[x]]])/(x + 100),
{x, (i + 1/2) π, (i + 3/2) π}, opts];

res = NSum[psum[i], {i, 0, ∞},
Method -> {"AlternatingSigns", Method -> "WynnEpsilon"},
"VerifyConvergence" -> False] +

NIntegrate[(Sign[Cos[x]] Sqrt[Abs[Cos[x]]])/(x + 100), {x, 0, (1/2) π}]
(*
0.00010967(-)
*)

This agrees with Chip Hurst's result to almost 5 digits. But the method is reasonably quick, so we can examine the convergence as the WorkingPrecision (and therefore the PrecisionGoal) is raised:


ClearAll[res];
mem : res[wp_: MachinePrecision] := mem =
NSum[psum[i, WorkingPrecision -> wp], {i, 0, ∞},
Method -> {"AlternatingSigns", Method -> "WynnEpsilon"},

"VerifyConvergence" -> False, WorkingPrecision -> wp] +
NIntegrate[(Sign[Cos[x]] Sqrt[Abs[Cos[x]]])/(x + 100),
{x, 0, (1/2) π}, WorkingPrecision -> wp];

Table[res[wp], {wp, 16, 40, 8}]
(*
{0.0001096696058468,
0.000109676059727856341260,
0.00010967605972782927874728238851,
0.0001096760597278292787470847687426733221}

*)

% // Differences
(*
{6.4538811*10^-9, -2.7062513*10^-17, -1.9761977*10^-25}
*)

At each step we extend the number of digits that agree, and we can see that the result seems reliable.




Alternatively, one can multiply and divide by cosine, which enables NIntegrate to use the "ExtrapolatingOscillatory" strategy. It's a bit slower because it introduces (integrable) singularities in the non-oscillatory part of the integrand, but again we get similar results.



ClearAll[res2];
mem : res2[wp_: MachinePrecision] := mem =
NIntegrate[Cos[q] (1/Sqrt[Abs[Cos[q]]])/(q + 100), {q, 0, Infinity},
Method -> "ExtrapolatingOscillatory",
MaxRecursion -> Ceiling[10 + 1.5 wp], (* increase in MaxRecursion for singularities *)
WorkingPrecision -> wp]

res2[]
(*
0.000109673

*)

Table[res2[wp], {wp, 16, 40, 8}]
(*
{0.0001096731867831,
0.000109676059727866251185,
0.00010967605972782927874731895632,
0.0001096760597278292787470847687424806474}
*)

Comments

Popular posts from this blog

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...