Skip to main content

numerical integration - highly oscillatory integral



Hi am trying to compute the following integral in Mathematica:


    NIntegrate[(Sign[Cos[q]] Sqrt[Abs[Cos[q]]])/(q+100),{q,0,Infinity}]

But when I run that command I get the following error:


    NIntegrate::ncvb: NIntegrate failed to converge to prescribed 
accuracy after 9 recursive bisections in q near {q} = {6.3887*10^56}.
NIntegrate obtained -317.031 and 171.60663912222586` for the integral
and error estimates.

Is there a way to solve this issue? Thanks




Answer



Here's a manual implementation of the extrapolating oscillatory strategy. NIntegrate balks at trying it because the cosine is buried inside other functions.


ClearAll[psum];
psum[i_?NumberQ, opts___] :=
NIntegrate[(Sign[Cos[x]] Sqrt[Abs[Cos[x]]])/(x + 100),
{x, (i + 1/2) π, (i + 3/2) π}, opts];

res = NSum[psum[i], {i, 0, ∞},
Method -> {"AlternatingSigns", Method -> "WynnEpsilon"},
"VerifyConvergence" -> False] +

NIntegrate[(Sign[Cos[x]] Sqrt[Abs[Cos[x]]])/(x + 100), {x, 0, (1/2) π}]
(*
0.00010967(-)
*)

This agrees with Chip Hurst's result to almost 5 digits. But the method is reasonably quick, so we can examine the convergence as the WorkingPrecision (and therefore the PrecisionGoal) is raised:


ClearAll[res];
mem : res[wp_: MachinePrecision] := mem =
NSum[psum[i, WorkingPrecision -> wp], {i, 0, ∞},
Method -> {"AlternatingSigns", Method -> "WynnEpsilon"},

"VerifyConvergence" -> False, WorkingPrecision -> wp] +
NIntegrate[(Sign[Cos[x]] Sqrt[Abs[Cos[x]]])/(x + 100),
{x, 0, (1/2) π}, WorkingPrecision -> wp];

Table[res[wp], {wp, 16, 40, 8}]
(*
{0.0001096696058468,
0.000109676059727856341260,
0.00010967605972782927874728238851,
0.0001096760597278292787470847687426733221}

*)

% // Differences
(*
{6.4538811*10^-9, -2.7062513*10^-17, -1.9761977*10^-25}
*)

At each step we extend the number of digits that agree, and we can see that the result seems reliable.




Alternatively, one can multiply and divide by cosine, which enables NIntegrate to use the "ExtrapolatingOscillatory" strategy. It's a bit slower because it introduces (integrable) singularities in the non-oscillatory part of the integrand, but again we get similar results.



ClearAll[res2];
mem : res2[wp_: MachinePrecision] := mem =
NIntegrate[Cos[q] (1/Sqrt[Abs[Cos[q]]])/(q + 100), {q, 0, Infinity},
Method -> "ExtrapolatingOscillatory",
MaxRecursion -> Ceiling[10 + 1.5 wp], (* increase in MaxRecursion for singularities *)
WorkingPrecision -> wp]

res2[]
(*
0.000109673

*)

Table[res2[wp], {wp, 16, 40, 8}]
(*
{0.0001096731867831,
0.000109676059727866251185,
0.00010967605972782927874731895632,
0.0001096760597278292787470847687424806474}
*)

Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

dynamic - How can I make a clickable ArrayPlot that returns input?

I would like to create a dynamic ArrayPlot so that the rectangles, when clicked, provide the input. Can I use ArrayPlot for this? Or is there something else I should have to use? Answer ArrayPlot is much more than just a simple array like Grid : it represents a ranged 2D dataset, and its visualization can be finetuned by options like DataReversed and DataRange . These features make it quite complicated to reproduce the same layout and order with Grid . Here I offer AnnotatedArrayPlot which comes in handy when your dataset is more than just a flat 2D array. The dynamic interface allows highlighting individual cells and possibly interacting with them. AnnotatedArrayPlot works the same way as ArrayPlot and accepts the same options plus Enabled , HighlightCoordinates , HighlightStyle and HighlightElementFunction . data = {{Missing["HasSomeMoreData"], GrayLevel[ 1], {RGBColor[0, 1, 1], RGBColor[0, 0, 1], GrayLevel[1]}, RGBColor[0, 1, 0]}, {GrayLevel[0], GrayLevel...