Skip to main content

visualization - Number of divisors visualized with the QPochhammer function, how to improve performance of code?


I have this code that is originally Jeffrey Stopple's code for the Riemann zeta function in the complex plane. Because I discovered yesterday that the number of divisors can be generated with the $q$-Pochhammer symbol (QPochhammer), and since Mathematica shows a plot of QPochhammer, I thought that plotting it would be fun.


Here is the code that needs improvement:


Show[Graphics[RasterArray[
Table[Hue[Mod[3 Pi/2 +
Arg[Sum[(s + I t)^(n - 1)*(QPochhammer[(s + I t)^(n + 1), (s + I t)]/

QPochhammer[(s + I t)^(n), (s + I t)]), {n, 1, 100}]],
2 Pi]/(2 Pi)], {t, -1.1, 1.1, .05}, {s, -1.1, 1.1, .05}]]],
AspectRatio -> Automatic]

And the code for the number of divisors:


CoefficientList[
Series[Sum[
x^(n - 1)*(QPochhammer[x^(n + 1), x]/QPochhammer[x^(n), x]), {n, 1,
104}], {x, 0, 103}], x] (*_ Mats Granvik_,Jan 03 2015*)


1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4,
6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, 4, 6, 2, 8,
4, 8, 4, 4, 2, 12, 2, 4, 6, 7, 4, 8, 2, 6, 4, 8, 2,...

The plot from the first program that I would like to improve:


Divisors from QPochhammer


Already if someone could post a plot with higher resolution, I would be glad. My computer is rather old.



Answer



It looks like you want to plot the phase-only information of a complex function. Using the following helper functions for plotting the phase-only information complex functions:


hue = Compile[{{z, _Complex}}, {Mod[3 π/2 + Arg[z], 

2 π]/(2 π), 1, If[Abs[z] > 10^-3, 1, 0]},
CompilationTarget -> "C", RuntimeAttributes -> {Listable}];
ComplexPlotC[f_, {x0_, x1_, δx_}, {y0_, y1_, δy_}] :=
Image[hue[
f[Outer[Complex, Range[x0, x1, δx],
Range[y1, y0, -δy]]]]\[Transpose], ColorSpace -> Hue,
Magnification -> 1];
CCompileC[expr_] :=
Compile[{{z, _Complex}}, Evaluate[expr], CompilationTarget -> "C",
RuntimeAttributes -> {Listable}];


You can then compile your function and plot it (I'll only sum 10 terms, rather than 100, as using 100 would take quite a long time):


func = CCompileC[
If[Abs[z] >= 0.999, 0,
Sum[z^(n - 1)*(QPochhammer[z^(n + 1), z]/
QPochhammer[z^(n), z]), {n, 1, 10}]]];
ComplexPlotC[func, {-1 + 10^-6 RandomReal[], 1,
0.003}, {-1 + 10^-6 RandomReal[], 1, 0.003}]

which gives the following:



enter image description here


Here is a 100-term sum picture (open in separate tab to see slightly larger picture):


enter image description here


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...