Skip to main content

differential equations - Numerical resolution of non-linear coupled ODEs


I have problem with my code in Mathematica. I have introduced the set of coupled non-linear ODES. This is the resolution part:


(*Initial parameters*)
A = 0.5;
a = 0.9;
Ω = 0.24;


(*Initial conditions*)
Ï…0 = 0.22;
α0 = Pi;
ψ0 = Pi/2;
r0 = 20;
θ0 = Pi/8;
φ0 = 0;

Needs["DifferentialEquations`NDSolveProblems`"]; \
Needs["DifferentialEquations`NDSolveUtilities`"];

(*Systems to integrate*)

system = {x1'[t] ==
Eq1[A, a, Ω, x1[t], x2[t], x3[t], x4[t], x5[t]],
x2'[t] ==
Eq2[A, a, Ω, x1[t], x2[t], x3[t], x4[t], x5[t]],
x3'[t] ==
Eq3[A, a, Ω, x1[t], x2[t], x3[t], x4[t], x5[t]],
x4'[t] ==
Eq4[A, a, Ω, x1[t], x2[t], x3[t], x4[t], x5[t]],

x5'[t] ==
Eq5[A, a, Ω, x1[t], x2[t], x3[t], x4[t], x5[t]],
x6'[t] ==
Eq6[A, a, Ω, x1[t], x2[t], x3[t], x4[t], x5[t]],
x1[0] == υ0, x2[0] == α0, x3[0] == ψ0,
x4[0] == r0, x5[0] == θ0, x6[0] == φ0};

sol = NDSolve[system, {x1, x2, x3, x4, x5, x6}, {t, 0, 14000},
Method -> {"StiffnessSwitching",
Method -> {"ExplicitRungeKutta", Automatic}}, AccuracyGoal -> 22,

MaxSteps -> Infinity, PrecisionGoal -> 15, WorkingPrecision -> 22];

ParametricPlot3D[
Evaluate[{x4[t]*Sin[x5[t]]*Cos[x6[t]], x4[t]*Sin[x5[t]]*Sin[x6[t]],
x4[t]*Cos[x5[t]]} /. sol], {t, 0, 14000}, PlotPoints -> 10000,
ColorFunction -> {Red}, ImageSize -> 500]

I receive the following error messages



NDSolve::precw: "The precision of the differential equation ({<<1>>}) is less than \ WorkingPrecision (22.`)"

NDSolve::ndsz: At t == 140.91450584595810589848638366914914657367`22., step size is \ effectively zero; singularity or stiff system suspected



Someone could suggest me how to improve my code? Thank you in advance.




Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

plotting - Magnifying Glass on a Plot

Although there is a trick in TEX magnifying glass but I want to know is there any function to magnifying glass on a plot with Mathematica ? For example for a function as Sin[x] and at x=Pi/6 Below, this is just a picture desired from the cited site. the image got huge unfortunately I don't know how can I change the size of an image here! Answer Insetting a magnified part of the original Plot A) by adding a new Plot of the specified range xPos = Pi/6; range = 0.2; f = Sin; xyMinMax = {{xPos - range, xPos + range}, {f[xPos] - range*GoldenRatio^-1, f[xPos] + range*GoldenRatio^-1}}; Plot[f[x], {x, 0, 5}, Epilog -> {Transparent, EdgeForm[Thick], Rectangle[Sequence @@ Transpose[xyMinMax]], Inset[Plot[f[x], {x, xPos - range, xPos + range}, Frame -> True, Axes -> False, PlotRange -> xyMinMax, ImageSize -> 270], {4., 0.5}]}, ImageSize -> 700] B) by adding a new Plot within a Circle mf = RegionMember[Disk[{xPos, f[xPos]}, {range, range/GoldenRatio}]] Show...