Skip to main content

graphics - How to texturize a Disk/Circle/Rectangle?


The documentation for Texture states that "other filled objects" can be texturized:



Texture[obj] is a graphics directive that specifies that obj should be used as a texture on faces of polygons and other filled graphics objects.




And also:



Texture can be used in FaceForm to texture front and back faces differently.



Though I fail to apply a simple texture to any of the following objects. It seems like that "other filled objects" only include Polygons and FilledPolygons, and FaceForm does not work with those.


img = Rasterize@
DensityPlot[Sin@x Sin@y, {x, -4, 4}, {y, -3, 3},
ColorFunction -> "BlueGreenYellow", Frame -> None,
ImageSize -> 100, PlotRangePadding -> 0];

{
Graphics[{Texture@img, Disk[]}],
Graphics[{FaceForm@Texture@img, Disk[]}],
Graphics[{Texture@img, Rectangle[]}],
Graphics[{FaceForm@Texture@img, Rectangle[]}],

(* Only this one works *)
Graphics[{Texture@img,
Polygon[{{0, 0}, {1, 0}, {1, 1}, {0, 1}},
VertexTextureCoordinates -> {{0, 0}, {1, 0}, {1, 1}, {0, 1}}]}],

Graphics[{FaceForm@Texture@img,
Polygon[{{0, 0}, {1, 0}, {1, 1}, {0, 1}},
VertexTextureCoordinates -> {{0, 0}, {1, 0}, {1, 1}, {0, 1}}]}]
}

Mathematica graphics


Edit:


It turns out that "Applying Texture to a disk directly isn't possible" (according to Heike, thanks s.s.o. for the link). This unfortunately means that:



  1. the official documentation of Texture is wrong (or at least is misleading, as graphics objects usually include primitives);


  2. either Texture is not fully integrated with the system, as it is not applicable for such primitives as a Rectangle, which seems to be just a very specific Polygon; or Rectangle is something else and is defined some other way at the lowest level than a Polygon (maybe it is some OS-dependent object).


Frankly, it is quite hard to imagine what kept developers to include this functionality, but I must assume they had a good reason.



Answer



I noticed an example in the document of Texture which used the alpha channel. So I think a disk-shape primitive may be simulated to a limited degree by mapping the image img, which has been set to 100% transparent outside of the circle, onto a rectangle-shape Polygon.


My code:


img = Rasterize[
DensityPlot[Sin[x] Sin[y],
{x, -4, 4}, {y, -3, 3},
ColorFunction -> "BlueGreenYellow",

Frame -> None, ImageSize -> 100, PlotRangePadding -> 0
]];

imgdim = ImageDimensions[img]

alphamask = Array[
If[
Norm[{#1, #2} - imgdim/2] < imgdim[[1]]/2,
1,0]&,
imgdim];


alphaimg = MapThread[Append, {img // ImageData, alphamask}, 2];

Graphics[{
Polygon[{{0, 0}, {1, 0}, {1, 1}, {0, 1}} + .3],
Texture[alphaimg],
Polygon[{{0, 0}, {1, 0}, {1, 1}, {0, 1}},
VertexTextureCoordinates -> {{0, 0}, {1, 0}, {1, 1}, {0, 1}}
],
Gray, Disk[{0, 0}, .5]

}]

which gives result like this:


result graph


Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...