Skip to main content

numerics - Quickly reducing the number of decimal digits for a set of real numbers


How can I quickly convert a number with $n$ decimal points to a number of with $m$ decimal points? Round works, however, it is slower than I would like. This example rounds a set of $100$ real numbers to $0.1$ decimal precision:


testvalues = Table[{RandomReal[], RandomReal[]}, {i, 1, 100}]

t1 = AbsoluteTime[];

For[i = 1, i <= 10^5, i++,

Round[testvalues, 0.1];
];

t2 = AbsoluteTime[];

t2 - t1

Takes $\approx 11.87$ seconds on my 3.47 GHz CPU. Floor and Ceiling take a commensurate amount of time.



Answer



Packing



You should make sure that your data is packed if at all possible:


Developer`PackedArrayQ[testvalues]


False

packedvalues = Developer`ToPackedArray@testvalues;

This at least speeds things a bit (timings in version 7 under Windows):


Do[Round[testvalues, 0.1], {10^5}]   // AbsoluteTiming

Do[Round[packedvalues, 0.1], {10^5}] // AbsoluteTiming


{7.0500098, Null}

{6.0500085, Null}

In version 9, and possibly 8, you should see a much greater improvement from packing that I experienced here in version 7. Other users are reporting well over an order of magnitude improvement in later versions.


Note that if you had generated the values with RandomReal[1, {100, 2}] they would have been packed to start with.


Data shape



In version 7, where the Round operation is handled by the Mathematica Kernel rather than the Intel MKL transposing the values before rounding makes a considerable difference:


Do[Round[packedvalues\[Transpose], 0.1]\[Transpose], {10^5}] // AbsoluteTiming


{3.8900054, Null}

SetAccuracy


Also applicable to version 7, an alternative that may be acceptable it is to use SetAccuracy which on my system this about twice as fast:


tvalues = packedvalues\[Transpose];


Do[SetAccuracy[tvalues, 2], {10^5}] // AbsoluteTiming


{1.7961027, Null}

Note that users of more recent versions will find that Round on a packed array is faster than SetAccuracy.


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...