Skip to main content

graphics - Why BoundingRegion does not work well?


Bug introduced in 8 or earlier and fixed in 12.0.0


The underlying bug is unstable and wrong rendering of Disk[] and Circle[] primitives after applying GeometricTransformation, see answer below.




I have a set of data points describing an ellipse in the plane. I want to obtain the best ellipse that fits them.



As a first attempt, I use this Q&A, and went well. However, I used in the past the following:


param = NArgMin[{Norm[
Function[{x, y}, ((x - h)*Cos[\[Alpha]] - (y - k)*Sin[\[Alpha]])^2/a^2 +
((x - h)*Sin[\[Alpha]] + (y - k)*Cos[\[Alpha]])^2/b^2 - 1] @@@ elip]},
{a, b, h, k, \[Alpha]}]

However, now this code does not work, and I do not know why.


Then, I went over the function BoundingRegion, and run:


elipse = BoundingRegion[elip, "FastEllipse"]
Graphics[{{LightBlue, elipse}, Point[elip]}, ImageSize -> Medium,

Axes -> True, PlotRange -> {{1, 578}, {1, 724}}]

and I got


enter image description here


Why do my two last attempts fail? Further, I do not understand why of the result by means of BoundingRegion as I should get the best ellipse that contains the points, shouldn't I?


My dataset is:


elip={{238., 277.}, {238., 278.}, {238., 279.}, {238., 280.}, {238., 
281.}, {238., 282.}, {238., 283.}, {238., 284.}, {238.,
285.}, {238., 286.}, {238., 287.}, {238., 288.}, {238.,
289.}, {238., 290.}, {238., 291.}, {238., 292.}, {238.,

293.}, {238., 294.}, {238., 295.}, {238., 296.}, {238.,
297.}, {238., 298.}, {238., 299.}, {238., 300.}, {238.,
301.}, {238., 302.}, {238., 303.}, {238., 304.}, {238.,
305.}, {238., 306.}, {238., 307.}, {238., 308.}, {238.,
309.}, {238., 310.}, {239., 271.}, {239., 272.}, {239.,
273.}, {239., 274.}, {239., 275.}, {239., 313.}, {239.,
314.}, {239., 315.}, {239., 316.}, {239., 317.}, {239.,
318.}, {239., 319.}, {240., 266.}, {240., 267.}, {240.,
268.}, {240., 269.}, {240., 321.}, {240., 322.}, {240.,
323.}, {240., 324.}, {240., 325.}, {240., 326.}, {241.,

263.}, {241., 264.}, {241., 265.}, {241., 327.}, {241.,
328.}, {241., 329.}, {241., 330.}, {241., 331.}, {242.,
260.}, {242., 261.}, {242., 262.}, {242., 333.}, {242.,
334.}, {242., 335.}, {242., 336.}, {243., 258.}, {243.,
259.}, {243., 338.}, {243., 339.}, {243., 340.}, {243.,
341.}, {244., 256.}, {244., 257.}, {244., 342.}, {244.,
343.}, {244., 344.}, {244., 345.}, {245., 254.}, {245.,
255.}, {245., 346.}, {245., 347.}, {245., 348.}, {246.,
253.}, {246., 254.}, {246., 350.}, {246., 351.}, {246.,
352.}, {247., 251.}, {247., 252.}, {247., 353.}, {247.,

354.}, {247., 355.}, {248., 250.}, {248., 251.}, {248.,
356.}, {248., 357.}, {248., 358.}, {249., 249.}, {249.,
250.}, {249., 359.}, {249., 360.}, {249., 361.}, {250.,
248.}, {250., 249.}, {250., 362.}, {250., 363.}, {250.,
364.}, {251., 247.}, {251., 248.}, {251., 365.}, {251.,
366.}, {251., 367.}, {252., 247.}, {252., 368.}, {252.,
369.}, {253., 246.}, {253., 370.}, {253., 371.}, {253.,
372.}, {254., 245.}, {254., 373.}, {254., 374.}, {255.,
245.}, {255., 375.}, {255., 376.}, {256., 244.}, {256.,
377.}, {256., 378.}, {256., 379.}, {257., 244.}, {257.,

380.}, {257., 381.}, {258., 243.}, {258., 382.}, {258.,
383.}, {259., 243.}, {259., 384.}, {259., 385.}, {260.,
243.}, {260., 386.}, {260., 387.}, {261., 243.}, {261.,
388.}, {261., 389.}, {262., 242.}, {262., 390.}, {262.,
391.}, {263., 242.}, {263., 392.}, {263., 393.}, {264.,
242.}, {264., 394.}, {264., 395.}, {265., 242.}, {265.,
396.}, {265., 397.}, {266., 242.}, {266., 397.}, {266.,
398.}, {267., 242.}, {267., 399.}, {267., 400.}, {268.,
242.}, {268., 401.}, {268., 402.}, {269., 242.}, {269.,
403.}, {269., 404.}, {270., 242.}, {270., 404.}, {270.,

405.}, {271., 242.}, {271., 406.}, {271., 407.}, {272.,
242.}, {272., 408.}, {272., 409.}, {273., 242.}, {273.,
409.}, {273., 410.}, {274., 411.}, {274., 412.}, {275.,
243.}, {275., 412.}, {275., 413.}, {276., 243.}, {276.,
414.}, {276., 415.}, {277., 243.}, {277., 416.}, {278.,
243.}, {278., 417.}, {278., 418.}, {279., 244.}, {279.,
419.}, {280., 244.}, {280., 420.}, {280., 421.}, {281.,
244.}, {281., 421.}, {281., 422.}, {282., 245.}, {282.,
423.}, {282., 424.}, {283., 245.}, {283., 424.}, {283.,
425.}, {284., 246.}, {284., 426.}, {285., 246.}, {285.,

427.}, {285., 428.}, {286., 247.}, {286., 428.}, {286.,
429.}, {287., 247.}, {287., 429.}, {287., 430.}, {288.,
248.}, {288., 431.}, {289., 248.}, {289., 249.}, {289.,
432.}, {289., 433.}, {290., 249.}, {290., 433.}, {290.,
434.}, {291., 250.}, {291., 434.}, {291., 435.}, {292.,
250.}, {292., 251.}, {292., 435.}, {292., 436.}, {293.,
251.}, {293., 437.}, {294., 252.}, {294., 438.}, {295.,
253.}, {295., 439.}, {296., 253.}, {296., 254.}, {296.,
440.}, {297., 254.}, {297., 255.}, {297., 441.}, {298.,
255.}, {298., 442.}, {299., 256.}, {299., 443.}, {300.,

257.}, {300., 444.}, {301., 258.}, {301., 444.}, {301.,
445.}, {302., 259.}, {302., 445.}, {302., 446.}, {303.,
260.}, {303., 446.}, {304., 261.}, {304., 447.}, {305.,
262.}, {305., 448.}, {306., 263.}, {306., 448.}, {306.,
449.}, {307., 264.}, {307., 265.}, {307., 449.}, {308.,
265.}, {308., 266.}, {308., 450.}, {309., 266.}, {309.,
267.}, {309., 450.}, {309., 451.}, {310., 268.}, {310.,
451.}, {311., 269.}, {311., 452.}, {312., 270.}, {312.,
271.}, {312., 452.}, {313., 271.}, {313., 272.}, {313.,
453.}, {314., 273.}, {314., 453.}, {315., 274.}, {315.,

275.}, {315., 454.}, {316., 275.}, {316., 276.}, {316.,
454.}, {317., 277.}, {317., 278.}, {317., 455.}, {318.,
278.}, {318., 279.}, {318., 455.}, {319., 280.}, {319.,
281.}, {319., 456.}, {320., 281.}, {320., 282.}, {320.,
456.}, {321., 283.}, {321., 284.}, {321., 456.}, {322.,
284.}, {322., 285.}, {322., 456.}, {323., 286.}, {323.,
287.}, {323., 457.}, {324., 288.}, {324., 289.}, {324.,
457.}, {325., 289.}, {325., 290.}, {325., 457.}, {326.,
291.}, {326., 292.}, {326., 457.}, {327., 293.}, {327.,
294.}, {327., 457.}, {328., 294.}, {328., 295.}, {328.,

296.}, {328., 457.}, {329., 296.}, {329., 297.}, {329.,
457.}, {330., 298.}, {330., 299.}, {330., 457.}, {331.,
300.}, {331., 301.}, {331., 457.}, {332., 302.}, {332.,
303.}, {332., 457.}, {333., 304.}, {333., 305.}, {333.,
457.}, {334., 306.}, {334., 307.}, {334., 457.}, {335.,
308.}, {335., 309.}, {335., 457.}, {336., 310.}, {336.,
311.}, {336., 457.}, {337., 312.}, {337., 313.}, {337.,
457.}, {338., 314.}, {338., 315.}, {338., 456.}, {339.,
316.}, {339., 317.}, {339., 456.}, {340., 318.}, {340.,
319.}, {340., 456.}, {341., 320.}, {341., 321.}, {341.,

322.}, {341., 456.}, {342., 322.}, {342., 323.}, {342.,
324.}, {342., 455.}, {343., 325.}, {343., 326.}, {343.,
455.}, {344., 327.}, {344., 328.}, {344., 329.}, {344.,
454.}, {345., 330.}, {345., 331.}, {345., 454.}, {346.,
332.}, {346., 333.}, {346., 334.}, {346., 453.}, {347.,
335.}, {347., 336.}, {347., 452.}, {347., 453.}, {348.,
337.}, {348., 338.}, {348., 339.}, {348., 452.}, {349.,
340.}, {349., 341.}, {349., 342.}, {349., 451.}, {350.,
343.}, {350., 344.}, {350., 345.}, {350., 450.}, {351.,
346.}, {351., 347.}, {351., 348.}, {351., 449.}, {352.,

349.}, {352., 350.}, {352., 351.}, {352., 447.}, {352.,
448.}, {353., 352.}, {353., 353.}, {353., 354.}, {353.,
446.}, {353., 447.}, {354., 356.}, {354., 357.}, {354.,
358.}, {354., 445.}, {354., 446.}, {355., 359.}, {355.,
360.}, {355., 361.}, {355., 362.}, {355., 443.}, {355.,
444.}, {356., 363.}, {356., 364.}, {356., 365.}, {356.,
366.}, {356., 441.}, {356., 442.}, {357., 367.}, {357.,
368.}, {357., 369.}, {357., 370.}, {357., 371.}, {357.,
439.}, {357., 440.}, {358., 372.}, {358., 373.}, {358.,
374.}, {358., 375.}, {358., 376.}, {358., 436.}, {358.,

437.}, {358., 438.}, {359., 377.}, {359., 378.}, {359.,
379.}, {359., 380.}, {359., 381.}, {359., 432.}, {359.,
433.}, {359., 434.}, {359., 435.}, {360., 383.}, {360.,
384.}, {360., 385.}, {360., 386.}, {360., 387.}, {360.,
388.}, {360., 389.}, {360., 427.}, {360., 428.}, {360.,
429.}, {360., 430.}, {360., 431.}, {361., 391.}, {361.,
392.}, {361., 393.}, {361., 394.}, {361., 395.}, {361.,
396.}, {361., 397.}, {361., 398.}, {361., 399.}, {361.,
400.}, {361., 401.}, {361., 419.}, {361., 420.}, {361.,
421.}, {361., 422.}, {361., 423.}, {361., 424.}, {361.,

425.}, {361., 426.}, {362., 408.}, {362., 409.}, {362.,
410.}, {362., 411.}, {362., 412.}, {362., 413.}}

Thanks for your time.



Answer



Here is an answer to your first question: Using Norm[] you'll get Abs[]-terms in the functional, which are sometimes problematical. Using the sum of squares


opt = FindMinimum[{#.# &[
Apply[Function[{x,
y}, ((x - h)*Cos[\[Alpha]] - (y - k)*Sin[\[Alpha]])^2/
a^2 + ( (x - h)*Sin[\[Alpha]] + (y - k)*Cos[\[Alpha]])^2/

b^2 - 1], elip, 1]]
, -Pi <= \[Alpha] <= Pi, a > b },
{ a , b , {h, Mean[elip][[1]]}, {k, Mean[elip][[2]]} , \[Alpha] },MaxIterations -> 1000, AccuracyGoal -> 4, PrecisionGoal -> 5]
(* {0.131336, {a -> 114.631, b -> 50.1975, h -> 299.194,k -> 350.063, \[Alpha] -> 1.93331}}*)

gives this result


Show[{ContourPlot[(((x - h)*Cos[\[Alpha]] - (y - k)*Sin[\[Alpha]])^2/
a^2 + ( (x - h)*Sin[\[Alpha]] + (y - k)*Cos[\[Alpha]])^2/
b^2 - 1 /. opt[[2]]) == 0, {x, 200, 400}, {y, 200, 500}]
,Graphics[{Red,Point[elip] }]},PlotRange -> All]


enter image description here


for the approximation.


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...