Skip to main content

computational geometry - Is there a numerical method/built-in to calculate the boundary of a set of graphs?


Recently, I encounted a geometry problem in my work. For a curve-family that owns the following parametric equation: $$E(t,\theta)= \begin{pmatrix} x_E(t,\theta) \\ y_E(t,\theta) \end{pmatrix}$$


where, $\theta \in [0,2\pi]$ and $t\in [0,1]$


Traditionally, I could apply the envelope theory to solve the points that located in the boundary.


$$\frac{\partial x_E(t,\theta)}{\partial t}\frac{\partial y_E(t,\theta)}{\partial \theta}-\frac{\partial x_E(t,\theta)}{\partial \theta}\frac{\partial y_E(t,\theta)}{\partial t}=0 \qquad (1)$$


So for the fixed $t_i$, the parameter of envelope-point $\theta_i$ could be solved with equation$(1)$


Here is a normal instance that using above theory(denoted envelope-point with $\color{blue} \square$).


enter image description here



Obvisouly, I can connect $P_{0,1}, P_{1,1}, \dots P_{4,1}$ and $P_{0,2},P_{1,2},\dots P_{4,2}$ in sequence to achieve the boundary/envelope.


However, for the complicated case, there are only some envelope-points(denoted with $\color{blue} \square$) on the boundary/envelope. That is, the envelope theory will unapplicable.


enter image description here


So my question is:



  • Is there a numerical method/built-in to calculate the boundary?(and achieve the coordinates of points that located on the boundary)




Update


Here are some data



coeff = {{{0., -5., 0}, {-5.2203, 0., 1.7945}}, 
{{-0.4188, -4.9846, 0.1071}, {-5.3218, 0.3923, 2.0267}},
{{-0.8583, -4.9384, 0.1765}, {-5.4189, 0.7822, 2.3088}},
{{-1.3234, -4.8618, 0.2192}, {-5.5122, 1.1672, 2.6475}},
{{-1.8203, -4.7553, 0.2473}, {-5.6022, 1.5451, 3.0486}},
{{-2.3568, -4.6194, 0.2742}, {-5.6897, 1.9134, 3.5173}},
{{-2.9427, -4.455, 0.3147}, {-5.7755, 2.27, 4.0578}},
{{-3.5912, -4.2632, 0.3857}, {-5.8604, 2.6125, 4.6738}},
{{-4.3197, -4.0451, 0.5068}, {-5.9456, 2.9389, 5.368}},
{{-5.1524, -3.802, 0.7017}, {-6.0327, 3.2472, 6.1428}},

{{-6.1237, -3.5355, 1.}, {-6.1237, 3.5355, 7.}}};

coeff2 = {{{0., -5., 0}, {-5.2203, 0., 1.7945}},
{{-0.4188, -4.9846, 0.3754}, {-5.3218, 0.3923, 1.8307}},
{{-0.8583, -4.9384, 0.6792}, {-5.4189, 0.7822, 1.8663}},
{{-1.3234, -4.8618, 0.9146}, {-5.5122, 1.1672, 1.9093}},
{{-1.8203, -4.7553, 1.0855}, {-5.6022, 1.5451, 1.9672}},
{{-2.3568, -4.6194, 1.1959}, {-5.6897, 1.9134, 2.047}},
{{-2.9427, -4.455, 1.2502}, {-5.7755, 2.27, 2.1556}},
{{-3.5912, -4.2632, 1.2528}, {-5.8604, 2.6125, 2.2995}},

{{-4.3197, -4.0451, 1.2087}, {-5.9456, 2.9389, 2.4846}},
{{-5.1524, -3.802, 1.1229}, {-6.0327, 3.2472, 2.7164}},
{{-6.1237, -3.5355, 1.}, {-6.1237, 3.5355, 3.}}};

which are the coefficient of ellipse. Namely, {{a,b,c},{d,e,f}}


$\begin{cases} x=a \sin\theta+b \cos\theta +c \\ y=d \sin\theta +e \cos\theta +f \\ \end{cases}$


ellipsePoints[{mat1_, mat2_}] :=
{mat1.{Sin[#], Cos[#], 1},
mat2.{Sin[#], Cos[#], 1}} & /@ Range[0, 2 Pi, 0.02 Pi]


points = Flatten[ellipsePoints /@ coeff, 1];
points2 = Flatten[ellipsePoints /@ coeff2, 1];

Thanks for RunnyKine's alphaShapes2D[] with diferent threshold :1,3


reg = RegionBoundary@alphaShapes2D[points, 1];
Show[{reg, ListPlot[points, AspectRatio -> Automatic]}, Axes -> True]

reg2 = RegionBoundary@alphaShapes2D[points, 3];
Show[{reg2, ListPlot[point2s, AspectRatio -> Automatic]}, Axes -> True]


enter image description here



Answer



Here is another answer inspired by Rahul's answer that also uses only built-in functions:


RegionBoundary @ DiscretizeGraphics @ Graphics[Polygon /@ ellipsePoints /@ coeff]

Mathematica graphics


RegionBoundary@
DiscretizeGraphics@Graphics[Polygon /@ ellipsePoints /@ coeff2]

enter image description here



RegionBoundary@
DiscretizeGraphics@
Graphics[Polygon /@
Table[
Table[
RotationMatrix[m].{2 + 5 Cos[x], 3 + 6 Sin[x]},
{x, 0, 2 Pi, 0.02 Pi}], {m, 0, Pi, Pi/20}]]

enter image description here


Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Adding a thick curve to a regionplot

Suppose we have the following simple RegionPlot: f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}] Now I'm trying to change the curve defined by $y=g[x]$ into a thick black curve, while leaving all other boundaries in the plot unchanged. I've tried adding the region $y=g[x]$ and playing with the plotstyle, which didn't work, and I've tried BoundaryStyle, which changed all the boundaries in the plot. Now I'm kinda out of ideas... Any help would be appreciated! Answer With f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 You can use Epilog to add the thick line: RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}, PlotPoints -> 50, Epilog -> (Plot[g[x], {x, 0, 2}, PlotStyle -> {Black, Thick}][[1]]), PlotStyle -> {Directive[Yellow, Opacity[0.4]], Directive[Pink, Opacity[0.4]],