Skip to main content

programming - How can I type-check the arguments of a Mathematica function?


(For educational purposes) I defined the following functions:


Translation (in $\mathbb{R}^2$):


trM[vec_] := {{1, 0, vec[[1]]}, {0, 1, vec[[2]]}, {0, 0, 1}}

Rotation (in $\mathbb{R}^2$):



rotM[angle_] := {{Cos[angle], -Sin[angle], 0}, {Sin[angle], Cos[angle], 0}, {0, 0, 1}}

Rotation around a point (in $\mathbb{R}^2$):


rotM[pt_, angle_] := trM[pt].rotM[angle].trM[-pt]

So far so good, now I want a function:


rotM[angle_, n_] := 
{{Cos[n angle], -Sin[n angle], 0}, {Sin[n angle], Cos[n angle], 0}, {0, 0, 1}}

Now



 rotM[angle_, n_] 

and


rotM[pt_, angle_] 

share — in Mathematica — the same signature, which breaks the polymorphism I intended to use, which then leads to the following question.


How can I type-check the arguments of a Mathematica function to enforce polymorphism?



Answer



At a minimal level you could discriminate like this


f[angle_ n_] := ...

f[pt : {_, _}, angle_] := ...

But if you want to be really picky, you could limit your pt argument to only except a list of two elements, both of which are numeric objects, but neither of which is a complex number. This can be done by defining a new argument pattern


pt2D = {Repeated[Except[_Complex, _?NumericQ], {2}]};

and using the pattern in a function definition such as


f[v : pt2D] := v

then


pts = {{1, 2}, {1., 2.}, {1., 2}, {1, π}, 1, {1}, {1, I}, {1, 2, 3}};

f /@ pts

gives



{{1, 2}, {1., 2.}, {1., 2}, {1, π}, f[1], f[{1}], f[{1, I}], f[{1, 2, 3}]}

Note both the wide acceptance of forms that have the structure of 2D points and the rejection of forms that don't.


Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Adding a thick curve to a regionplot

Suppose we have the following simple RegionPlot: f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}] Now I'm trying to change the curve defined by $y=g[x]$ into a thick black curve, while leaving all other boundaries in the plot unchanged. I've tried adding the region $y=g[x]$ and playing with the plotstyle, which didn't work, and I've tried BoundaryStyle, which changed all the boundaries in the plot. Now I'm kinda out of ideas... Any help would be appreciated! Answer With f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 You can use Epilog to add the thick line: RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}, PlotPoints -> 50, Epilog -> (Plot[g[x], {x, 0, 2}, PlotStyle -> {Black, Thick}][[1]]), PlotStyle -> {Directive[Yellow, Opacity[0.4]], Directive[Pink, Opacity[0.4]],