Skip to main content

graphics - How can I customize arrowhead shape to match common LaTeX styles?


How do I control the shape of my arrow heads? LaTeX's TikZ package has a wide variety of predefined arrowhead styles, some of which I'd like to try to match for Mathematica figures I'm importing into a LaTeX document:



LaTeX arrow examples


But Mathematica's default arrowhead style comes nowhere near any of these. For example,


Graphics[{Thick, Arrow[{{0, 0}, {-50, 0}}]}] 

yields


Default Mathematica arrow


Earlier versions of Mathematica had options for controlling arrowhead shape, but those seem to be gone in 8.0.


How can I get the shape of my Mathematica arrowheads to match the LaTeX TikZ arrowhead styles?



Answer



Here is a Manipulate to design yourself an Arrow:



DynamicModule[{top, baseMid, rightBase, outerMidRight, innerMidRight},
Manipulate[
top = {0, 0};
baseMid = {1, 0} baseMid;
rightBase = {1, -1} leftBase;
outerMidRight = {1, -1} outerMidLeft;
innerMidRight = {1, -1} innerMidLeft;
h = Graphics[
{
Opacity[0.5],

FilledCurve[
{
BSplineCurve[{baseMid, innerMidLeft, leftBase}],
BSplineCurve[{leftBase, outerMidLeft, top}],
BSplineCurve[{top, outerMidRight, rightBase}],
BSplineCurve[{rightBase, innerMidRight, baseMid}]
}
]
}
],

{{baseMid, {-2, 0}}, Locator},
{{innerMidLeft, {-2, 0.5}}, Locator},
{{leftBase, {-2, 1}}, Locator},
{{outerMidLeft, {-1, 1}}, Locator}
]
]

Mathematica graphics


It is easy to add more control points if the need arises.


The arrowhead graphics is put in the variable h. Note that it contains an Opacity function for better visibility of the control points. You need to remove that if you want to have a fully saturated arrow head.



Some examples generated with this Manipulate using:


Graphics[
{ Arrowheads[{{Automatic, 1, h /. Opacity[_] :> Sequence[]}}],
Arrow /@
Table[{{0, 0}, {Sin[t], Cos[t]}}, {t, 0, 2 \[Pi] - 2 \[Pi]/20, 2 \[Pi]/20}]
},
PlotRangePadding -> 0.2
]

Mathematica graphics



The code for the arrow heads can be found in h. Just copy the graphics or the FullForm to store it for later use.


h /. Opacity[_] :> Sequence[] // FullForm

(* ==>
Graphics[{FilledCurve[{BSplineCurve[{{-0.496, 0.}, {-1., 0.48}, {-2,1}}],
BSplineCurve[{{-2, 1}, {-0.548, 0.44999999999999996}, {0, 0}}],
BSplineCurve[{{0, 0}, {-0.548, -0.44999999999999996}, {-2, -1}}],
BSplineCurve[{{-2, -1}, {-1., -0.48}, {-0.496, 0.}}]}]}
]
*)




EDIT
One more control point will cover most common shapes:


DynamicModule[{top, baseMid, outerMidRight, innerMidRight, 
innerBaseRight, outerBaseRight},
Manipulate[
top = {0, 0};
baseMid = {1, 0} baseMid;
innerBaseRight = {1, -1} innerBaseLeft;

outerBaseRight = {1, -1} outerBaseLeft;
outerMidRight = {1, -1} outerMidLeft;
innerMidRight = {1, -1} innerMidLeft;
h = Graphics[
{
Opacity[0.5],
FilledCurve[
{
BSplineCurve[{baseMid, innerMidLeft, innerBaseLeft}],
Line[{innerBaseLeft, outerBaseLeft}],

BSplineCurve[{outerBaseLeft, outerMidLeft, top}],
BSplineCurve[{top, outerMidRight, outerBaseRight}],
Line[{outerBaseRight, innerBaseRight}],
BSplineCurve[{innerBaseRight, innerMidRight, baseMid}]
}
]
}
],
{{baseMid, {-2, 0}}, Locator},
{{innerMidLeft, {-2, 0.5}}, Locator},

{{innerBaseLeft, {-2, 1}}, Locator},
{{outerBaseLeft, {-2, 1.1}}, Locator},
{{outerMidLeft, {-1, 1}}, Locator}
]
]

Mathematica graphics


Mathematica graphics


Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...