Skip to main content

graphics - How can I customize arrowhead shape to match common LaTeX styles?


How do I control the shape of my arrow heads? LaTeX's TikZ package has a wide variety of predefined arrowhead styles, some of which I'd like to try to match for Mathematica figures I'm importing into a LaTeX document:



LaTeX arrow examples


But Mathematica's default arrowhead style comes nowhere near any of these. For example,


Graphics[{Thick, Arrow[{{0, 0}, {-50, 0}}]}] 

yields


Default Mathematica arrow


Earlier versions of Mathematica had options for controlling arrowhead shape, but those seem to be gone in 8.0.


How can I get the shape of my Mathematica arrowheads to match the LaTeX TikZ arrowhead styles?



Answer



Here is a Manipulate to design yourself an Arrow:



DynamicModule[{top, baseMid, rightBase, outerMidRight, innerMidRight},
Manipulate[
top = {0, 0};
baseMid = {1, 0} baseMid;
rightBase = {1, -1} leftBase;
outerMidRight = {1, -1} outerMidLeft;
innerMidRight = {1, -1} innerMidLeft;
h = Graphics[
{
Opacity[0.5],

FilledCurve[
{
BSplineCurve[{baseMid, innerMidLeft, leftBase}],
BSplineCurve[{leftBase, outerMidLeft, top}],
BSplineCurve[{top, outerMidRight, rightBase}],
BSplineCurve[{rightBase, innerMidRight, baseMid}]
}
]
}
],

{{baseMid, {-2, 0}}, Locator},
{{innerMidLeft, {-2, 0.5}}, Locator},
{{leftBase, {-2, 1}}, Locator},
{{outerMidLeft, {-1, 1}}, Locator}
]
]

Mathematica graphics


It is easy to add more control points if the need arises.


The arrowhead graphics is put in the variable h. Note that it contains an Opacity function for better visibility of the control points. You need to remove that if you want to have a fully saturated arrow head.



Some examples generated with this Manipulate using:


Graphics[
{ Arrowheads[{{Automatic, 1, h /. Opacity[_] :> Sequence[]}}],
Arrow /@
Table[{{0, 0}, {Sin[t], Cos[t]}}, {t, 0, 2 \[Pi] - 2 \[Pi]/20, 2 \[Pi]/20}]
},
PlotRangePadding -> 0.2
]

Mathematica graphics



The code for the arrow heads can be found in h. Just copy the graphics or the FullForm to store it for later use.


h /. Opacity[_] :> Sequence[] // FullForm

(* ==>
Graphics[{FilledCurve[{BSplineCurve[{{-0.496, 0.}, {-1., 0.48}, {-2,1}}],
BSplineCurve[{{-2, 1}, {-0.548, 0.44999999999999996}, {0, 0}}],
BSplineCurve[{{0, 0}, {-0.548, -0.44999999999999996}, {-2, -1}}],
BSplineCurve[{{-2, -1}, {-1., -0.48}, {-0.496, 0.}}]}]}
]
*)




EDIT
One more control point will cover most common shapes:


DynamicModule[{top, baseMid, outerMidRight, innerMidRight, 
innerBaseRight, outerBaseRight},
Manipulate[
top = {0, 0};
baseMid = {1, 0} baseMid;
innerBaseRight = {1, -1} innerBaseLeft;

outerBaseRight = {1, -1} outerBaseLeft;
outerMidRight = {1, -1} outerMidLeft;
innerMidRight = {1, -1} innerMidLeft;
h = Graphics[
{
Opacity[0.5],
FilledCurve[
{
BSplineCurve[{baseMid, innerMidLeft, innerBaseLeft}],
Line[{innerBaseLeft, outerBaseLeft}],

BSplineCurve[{outerBaseLeft, outerMidLeft, top}],
BSplineCurve[{top, outerMidRight, outerBaseRight}],
Line[{outerBaseRight, innerBaseRight}],
BSplineCurve[{innerBaseRight, innerMidRight, baseMid}]
}
]
}
],
{{baseMid, {-2, 0}}, Locator},
{{innerMidLeft, {-2, 0.5}}, Locator},

{{innerBaseLeft, {-2, 1}}, Locator},
{{outerBaseLeft, {-2, 1.1}}, Locator},
{{outerMidLeft, {-1, 1}}, Locator}
]
]

Mathematica graphics


Mathematica graphics


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...