Skip to main content

cluster analysis - Clustering a set of points


I have a set of 2D points in the square defined by {-1, -1} and {1, 1}. These points typically form compact groups. I need to break them into clusters in such a way that the rectangular bounding boxes of the clusters will not overlap. The bounding boxes are expanded by a pre-specified margin, denoted dist.


I managed to implement this by computing the pairwise Manhattan distance, building a corresponding graph and taking the connected components of the graph (see attached code).


I was hoping that there would be a simper solution which avoids computing the complete pairwise distance matrix. I tried using FindClusters, but not having any experience with the underlying methods I did not manage to get it to return the appropriate number of clusters (it typically lumps everything together, even when points are "visually" separate). So the question is: Is it possible to implement this using FindClusters? The key is in choosing the correct Method option for FindClusters, which is unfortunately not documented in a way that's easy to understand for someone not familiar with these methods.


Requirements: The clustering does not need to be precise. If the method returns a bit fewer clusters than what I show in the image below, that's okay. I need the results for a heuristic decision anyway. But it should not lump together things which are rather far compared to the size of the visually perceived clusters. It is very easy for us humans to recognize these clusters, and I'd like to get the computer to give me same output one would naturally construct by hand after looking at the image. All points sets I have have a very similar structure to the one I show below, but the groups may have different size scales. This is why it makes sense to ask "I'd like to have the clusters similar to what I perceive visually". The method must work without any user intervention (manual estimation of parameters).




pts = Import["http://ge.tt/api/1/files/7sHEVob/0/blob?download", "WDX"];

dist = 0.01;


comp = ConnectedComponents@
AdjacencyGraph[
UnitStep[2 dist - Outer[ManhattanDistance, pts, pts, 1]]];

Graphics@MapIndexed[
With[{p = pts[[#1]]}, {{GrayLevel[.9],
Rectangle[{Min[p[[All, 1]]], Min[p[[All, 2]]]} -
dist, {Max[p[[All, 1]]], Max[p[[All, 2]]]} +
dist]}, {ColorData[3][First[#2]], Point[p]}}] &, comp]


Click for a larger image:




Answer



This is roughly 30 times faster than your approach and can be tuned easier than FindClusters[]:


getOneCluster[pts_List, maxDist_?NumericQ] :=(*Returns a cluster*)
Module[{f},
f = Nearest[pts];
FixedPoint[Union@Flatten[f[#, {Infinity, maxDist}] & /@ #, 1] &, {First@pts}]]
clusters[data_] := Module[{f, dist},

(* Some Characteristic Distance, assuming no isolated points*)
f = Nearest[data];
dist = 3 Max[EuclideanDistance[Last@f[#, 2], #] & /@ data];
Flatten[Reap[NestWhile[Complement[#, Sow@getOneCluster[#, dist]] &, data,
# != {} &]][[2]], 1]
]

(* Gen some data *)

SeedRandom[42];

numberOfClusters = 42;
clustersCenters = RandomReal[{0, 1}, {numberOfClusters, 2}];
data = Flatten[RandomVariate[BinormalDistribution[#, .002 {1, 1}, .1], 100] & /@
clustersCenters, 1];
pad = .01;

Plotting the results:


Graphics[MapIndexed[With[{p = #1}, {{GrayLevel[.9], 
Rectangle[{Min[p[[All, 1]]], Min[p[[All, 2]]]} - pad,
{Max[p[[All, 1]]], Max[p[[All, 2]]]} + pad]},

{ColorData[3][First[#2]], Point[p]}}] &, clusters[data]],
Axes -> True]

Mathematica graphics


The problem with "merging" those clusters so that the bounding boxes don't overlap needs some heuristic and I think it should better be done as a post-processing step. The caveat is that the merging process done blindly (and worst, recursively) can aggregate much more points than seems reasonable. Take a look:


Mathematica graphics


Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Adding a thick curve to a regionplot

Suppose we have the following simple RegionPlot: f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}] Now I'm trying to change the curve defined by $y=g[x]$ into a thick black curve, while leaving all other boundaries in the plot unchanged. I've tried adding the region $y=g[x]$ and playing with the plotstyle, which didn't work, and I've tried BoundaryStyle, which changed all the boundaries in the plot. Now I'm kinda out of ideas... Any help would be appreciated! Answer With f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 You can use Epilog to add the thick line: RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}, PlotPoints -> 50, Epilog -> (Plot[g[x], {x, 0, 2}, PlotStyle -> {Black, Thick}][[1]]), PlotStyle -> {Directive[Yellow, Opacity[0.4]], Directive[Pink, Opacity[0.4]],