Skip to main content

calculus and analysis - How to calculate specific area on surface of sphere?


I am trying to calculate the solid angle subtended by arbitrary-shaped loops on a sphere's surface.


First, I parametrize circular loops by:


θ(t,kx0,r)=kx0+rcos(t);

Ï•(t,ky0,r)=ky0+rsin(t);


where 0≤t≤2π, and kx0, ky0 define the loop's center. So, we can say that this step draws out a circular loop on the θ/ϕ plane.


Then I project these onto the sphere's surface using spherical coordinates, as follows:



x(θ,ϕ)=rcosθsinϕ,y(θ,ϕ)=rsinθsinϕ,z(θ,ϕ)=rcosϕ


How do I go about calculating the surface area within these (x,y,z) loops on the surface? This will allow me to calculate the solid angle I need.


The solid angle is given by: Ω=∬Sˆr⋅ˆnr2dΣ=∬Rsinθdθdϕ=spherical surface arear2


I tried using various types of RegionMeasures to calculate this area (such as defining the area within the loop on the sphere as a Region, and by varying the radius from 0 to r, calculating the length of each loop in between and summing it all up), but I feel like I am missing a simple answer to my problem. Maybe what I am missing is a way to somehow map my arbitrary loops into a appropriate integration bounds for Ω, but I tried to avoid this by resorting to Mathematica.


So far, I found the following posts most useful:


Integrate to calculate enclosed area


https://math.stackexchange.com/questions/1832110/area-of-a-circle-on-sphere


Thanks in advance for your time!


Note: I am parametrizing these loops in a peculiar way because I am trying to investigate a physics problem where the functions x(θ,ϕ),y(θ,ϕ),z(θ,ϕ) will be different, and make my loops twist and turn. The ultimate goal is to find the solid angle in these cases, but I wanted to start with the sphere.


Note: I posted a similar question before, but it was misinterpreted by answerers because I did a poor job phrasing it at first, and I am afraid that it lost attention and I still am clueless as to how to proceed (I did not want to delete it because others already put time into it).





Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...