Skip to main content

calculus and analysis - How to calculate specific area on surface of sphere?


I am trying to calculate the solid angle subtended by arbitrary-shaped loops on a sphere's surface.


First, I parametrize circular loops by:


$$\theta(t,k_{x0},r) = k_{x_0} + r \cos(t);$$ $$\phi(t,k_{y0},r) = k_{y_0} + r \sin(t);$$


where $0\leq t\leq2\pi$, and $k_{x_0}$, $k_{y_0}$ define the loop's center. So, we can say that this step draws out a circular loop on the $\theta/\phi$ plane.


Then I project these onto the sphere's surface using spherical coordinates, as follows:



$$x(\theta,\phi)=r \cos{\theta}\sin{\phi}, y(\theta,\phi)=r \sin{\theta}\sin{\phi}, z(\theta,\phi)=r \cos{\phi}$$


How do I go about calculating the surface area within these $(x,y,z)$ loops on the surface? This will allow me to calculate the solid angle I need.


The solid angle is given by: $$\Omega= \iint_S \frac{\hat{r}\cdot\hat{n}}{r^2} \, \mathrm{d}\Sigma = \iint_{\mathcal{R}}\sin \theta \, \mathrm{d} \theta \, \mathrm{d} \phi=\frac{\textrm{spherical surface area}}{r^2}$$


I tried using various types of RegionMeasures to calculate this area (such as defining the area within the loop on the sphere as a Region, and by varying the radius from 0 to r, calculating the length of each loop in between and summing it all up), but I feel like I am missing a simple answer to my problem. Maybe what I am missing is a way to somehow map my arbitrary loops into a appropriate integration bounds for $\Omega$, but I tried to avoid this by resorting to Mathematica.


So far, I found the following posts most useful:


Integrate to calculate enclosed area


https://math.stackexchange.com/questions/1832110/area-of-a-circle-on-sphere


Thanks in advance for your time!


Note: I am parametrizing these loops in a peculiar way because I am trying to investigate a physics problem where the functions $x(\theta,\phi),y(\theta,\phi),z(\theta,\phi)$ will be different, and make my loops twist and turn. The ultimate goal is to find the solid angle in these cases, but I wanted to start with the sphere.


Note: I posted a similar question before, but it was misinterpreted by answerers because I did a poor job phrasing it at first, and I am afraid that it lost attention and I still am clueless as to how to proceed (I did not want to delete it because others already put time into it).





Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...