Skip to main content

plotting - About multi-root search in Mathematica for transcendental equations



I have some questions for multiroot search for transcendental equations. Is there any clever solution to find all the roots for a transcendental equation in a specific range?


Perhaps FindRoot is the most efficient way to solve transcendental equations, but it only gives one root around a specific value. For example,


FindRoot[BesselJ[1, x]^2 + BesselK[1, x]^2 - Sin[Sin[x]], {x, 10}]

Of course, one can first Plot the equation and then choose several start values around each root and then use FindRoot to get the exact value.




  1. Is there any elegant way to find all the roots at once?


    Actually, I come up with this question when I solve the eigenequation for optical waveguides and I want to get the dispersion relation. I find ContourPlot is very useful to get the curve of the dispersion relation. For example,


    ContourPlot[BesselJ[1, x]^2 + BesselK[1, x]^2 - Sin@Sin[a*x] == 0, {x, 0, 10}, {a, 0, 4}]


    You can get


    enter image description here




  2. Is there any elegant way to get all the values in the ContourPlot for x when a==0 ?




  3. Is it possible to know how the ContourPlot gets all the points shown in the figure? Perhaps we can harness it to get all the roots for the transcendental equation.






Answer



Borrowing almost verbatim from a recent response about finding extrema, here is a method that is useful when your function is differentiable and hence can be "tracked" by NDSolve.


f[x_] := BesselJ[1, x]^2 + BesselK[1, x]^2 - Sin[Sin[x]]

In[191]:= zeros =
Reap[soln =
y[x] /. First[
NDSolve[{y'[x] == Evaluate[D[f[x], x]], y[10] == (f[10])},
y[x], {x, 10, 0},

Method -> {"EventLocator", "Event" -> y[x],
"EventAction" :> Sow[{x, y[x]}]}]]][[2, 1]]


During evaluation of In[191]:=
NDSolve::mxst: Maximum number of 10000 steps reached at the point
x == 1.5232626281716416`*^-124. >>

Out[191]= {{9.39114, 8.98587*10^-16}, {6.32397, -3.53884*10^-16},
{3.03297, -8.45169*10^-13}, {0.886605, -4.02456*10^-15}}


Plot[f[x], {x, 0, 10},
Epilog -> {PointSize[Medium], Red, Point[zeros]}]

function and roots


If it were a trickier function, one might use Method -> {"Projection", ...} to enforce the condition that y[x] is really the same as f[x]. This method may be useful in situations (if you can find them) where we have one function in one variable, and Reduce either cannot handle it or takes a long time to do so.




Addendum by J. M.


WhenEvent is now the documented way to include event detection in NDSolve, so using it along with the trick of specifying an empty list where the function should be, here's how to get a pile of zeroes:


f[x_] := BesselJ[1, x]^2 + BesselK[1, x]^2 - Sin[Sin[x]]


zeros = Reap[NDSolve[{y'[x] == D[f[x], x], WhenEvent[y[x] == 0, Sow[{x, y[x]}]],
y[10] == f[10]}, {}, {x, 10, 0}]][[-1, 1]];

Plot[f[x], {x, 0, 10}, Epilog -> {PointSize[Medium], Red, Point[zeros]}]

function and roots


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...