Skip to main content

graphics - How to position legends exactly where I want them?


I just noticed another plot legend question today and while user solutions to this, in particular code by @Jens, are IMO better than the built in solutions, exact positioning often still requires some trial and error.


How can I easily position my legends by way of locators?



Answer



Given that plot legend question keep arising I thought I would share my approach to legend positioning. I want to be able to use the legend as a locator and move it to the exact position I want it.


pt = Scaled[{0.5, 0.5}];

(* image padding for the ListLinePlot *)
{{l, r}, {b, t}} = {{20, 100}, {100, 10}};
(* width and height of the ListLinePlot *)

{w, h} = {400, 300};

opts = {AspectRatio -> 0.2, ImageMargins -> 0, ImagePadding -> 0,
ImageSize -> 30};

(* toy legend *)
legend = Column[{
Grid[{{Graphics[{AbsoluteThickness[5], Red,
Line[{{0, 0}, {1, 0}}]}, opts], Style["label1", 16]}},
Alignment -> {Center, Center}, Spacings -> 0.5],

Grid[{{Graphics[{AbsoluteThickness[5], Blue,
Line[{{0, 0}, {1, 0}}]}, opts], Style["label2", 16]}},
Alignment -> {Center, Center}, Spacings -> 0.5]
}];

p1 = Overlay[{
ListLinePlot[{{3, 6, 7, 2}, {1, 2, 3, 4}},
AspectRatio -> h/w,
ImageSize -> {w + l + r, h + b + t},
ImagePadding -> {{l, r}, {b, t}},

PlotStyle -> {{AbsoluteThickness[5], Red}, {AbsoluteThickness[5],
Blue}}],


(* an empty graphic surrounding the ListLinePlot -- control this surrounding size by
adjusting the image padding variables*)
Graphics[{}, AspectRatio -> (h + b + t)/(w + l + r),
ImageSize -> {w + l + r, h + b + t}, ImagePadding -> 0,
Epilog -> {Dynamic[Locator[Dynamic[pt], legend]]}]
}, All, 2]


The legend can be positioned where you like. In this case I've started with large padding on the right and bottom. For column legends you may want to position to the right. For row legends on top or to the bottom.


Start:


enter image description here


move the legend:


enter image description here


You can see it working dynamically here.


To remove the dynamics from this and keep a static image:


p2 = p1 /. Locator[x_, y_] :> Inset[y, x] /. Dynamic :> Identity


Inset plots within a plot can be handled in a similar way -- namely as locators, there is no need for the surrounding graphic and the overlay in that case.


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...