Skip to main content

calculus and analysis - Why the Kernel crashes on these integrals in V12?


Reported to WRI, [CASE:4331819]




This is using V12, on windows 10, 64 bit. Note: these integrals work OK on 11.3 on same PC.


enter image description here




Any idea why the Kernel now crashes on these types of integrals?


ClearAll[x,a,b,c,e,d,f,g,n];

(*these from file #40,41*)

Integrate[(1 + x^2)^3/(1 + x^2 + x^4)^(3/2), x];
Integrate[(1 + x^2)^2/(1 + x^2 + x^4)^(3/2), x];
Integrate[(1 + x^2)/(1 + x^2 + x^4)^(3/2), x];
Integrate[(7 + 5*x^2)^3/(2 + 3*x^2 + x^4)^(3/2), x];
Integrate[(7 + 5*x^2)^2/(2 + 3*x^2 + x^4)^(3/2), x];
Integrate[(7 + 5*x^2)/(2 + 3*x^2 + x^4)^(3/2), x];
Integrate[(2 + 3*x^2 + x^4)^(3/2)*(7 + 5*x^2)^3, x];
Integrate[(2 + 3*x^2 + x^4)^(3/2)*(7 + 5*x^2)^2, x];
Integrate[(2 + 3*x^2 + x^4)^(3/2)*(7 + 5*x^2), x];
Integrate[(7+5*x^2)^4/(2+3*x^2+x^4)^(3/2),x];

Integrate[(7+5*x^2)^2/(2+3*x^2+x^4)^(3/2),x];
Integrate[(4+3*x^2+x^4)^(3/2)*(7+5*x^2),x];
Integrate[(d+e*x^2)*(a+b*x^2+c*x^4)^(3/2)/(f*x)^(1/2),x];

(*these from file #42*)
Integrate[(a*g - c*g*x^4)/(a + b*x^2 + c*x^4)^(3/2), x];
Integrate[(a*g+e*x-c*g*x^4)/(a+b*x^2+c*x^4)^(3/2),x];
Integrate[(a*g+f*x^3-c*g*x^4)/(a+b*x^2+c*x^4)^(3/2),x];
Integrate[(a*g+e*x+f*x^3-c*g*x^4)/(a+b*x^2+c*x^4)^(3/2),x];


(*these from file #44*)
Integrate[(A+B*x^2)*(d+e*x^2)/(a+b*x^2+c*x^4)^(3/2),x];
Integrate[(A+B*x^2)/(a+b*x^2+c*x^4)^(3/2),x]

(*these from file #49*)
Integrate[(-a*h*x^(n/2 - 1) + c*f*x^(n - 1) + c*g*x^(2*n - 1) +c*h*x^((5*n)/2 - 1))/(a + b*x^n + c*x^(2*n))^(3/2), x];
Integrate[(x^(n/2 - 1)*(-a*h + c*f*x^(n/2) + c*g*x^((3*n)/2)+c*h*x^(2*n)))/(a + b*x^n + c*x^(2*n))^(3/2), x];
Integrate[((d*x)^(n/2-1)*(-a*h+c*f*x^(n/2)+c*g*x^((3*n)/2)+c*h*x^(2*n)))/(a+b*x^n+c*x^(2*n))^(3/2),x];
(*etc..*)


Mathematica graphics


Mathematica graphics


Mathematica graphics


No problem with V 11.3


Mathematica graphics


Mathematica graphics


Mathematica graphics


Does this happen to others and on other systems or just on windows 10?


It looks like it is the same bug that is causing all these crashes, but I can't be sure.


I am finding that V12 kernel crashes more than V 11.3 kernel and also in strange ways. This makes it very hard to run a long script, when kernel keeps crashing.



ps. I think WRI should have been able to detect these before making a release by running regression tests. I am using Rubi integration test files to find these problems.


pps. I hope I do not get downvoted again for asking about a possible problem in Mathematica like in the last post on that bizarre kernel crash.




Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Adding a thick curve to a regionplot

Suppose we have the following simple RegionPlot: f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}] Now I'm trying to change the curve defined by $y=g[x]$ into a thick black curve, while leaving all other boundaries in the plot unchanged. I've tried adding the region $y=g[x]$ and playing with the plotstyle, which didn't work, and I've tried BoundaryStyle, which changed all the boundaries in the plot. Now I'm kinda out of ideas... Any help would be appreciated! Answer With f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 You can use Epilog to add the thick line: RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}, PlotPoints -> 50, Epilog -> (Plot[g[x], {x, 0, 2}, PlotStyle -> {Black, Thick}][[1]]), PlotStyle -> {Directive[Yellow, Opacity[0.4]], Directive[Pink, Opacity[0.4]],