Skip to main content

list manipulation - Generalization to AllTrue, AnyTrue and NoneTrue


I am wondering if there is a natural Mathematica way to generalize those functions. To be specific, All three functions AllTrue, AnyTrue and NoneTrue return a Boolean value when a list of length L contains certain number of elements satisfying a predicate.


For example, AllTrue returns true when the number of elements satisfying the predicate is L while NoneTrue returns true when the number is 0. On the contrary, AnyTrue returns true when the number is at least 1.


I am considering the generalization SomeTrue[ list, pred, n] that it returns true when the number is at least n.


Another generalization might be SomeTrue[ list, pred, {n}] that it returns true when the number is exactly n.


One natural way I can think of is just using Count function to calculate the number and compare the criterion but it does not allow the early exit(i.e., every element should be checked even for the case where the result is determined in the early stage).


For people like me migrating from procedural language, the algorithm might be obvious using For loop with counters and early return statements. It would be nice if you can show some examples with truly Mathematica way to attack such problems.




Answer



Select is fairly close to this already, notably including early exit behavior, so perhaps:


someTrue[list_, pred_, {m_} | n_] :=
n + m == Length @ Select[list, pred, 1 n + m]

Test:


someTrue[Range@10, PrimeQ, 3]
someTrue[Range@10, PrimeQ, 5]
someTrue[Range@10, PrimeQ, {4}]
someTrue[Range@10, PrimeQ, {2}]



True

False

True

False




The code above is me trying to be clever with vanishing patterns. The longer but more legible form:


someTrue[list_, pred_, n_]   := n == Length @ Select[list, pred, n]
someTrue[list_, pred_, {n_}] := n == Length @ Select[list, pred, n + 1]

Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...