Skip to main content

graphs and networks - Coloring edges in GraphPlot


I'm a little stuck with graph drawing part of my research — I can't use the Graph function for plotting my graphs, because my graph is a multi-graph. Graph is convenient because it colors edges quite easily.


Since I have a 3-regular (or even 4-regular) graph, where there are 3 (or 4) perfect matching, I want each of the matching to be colored differently.


What's the best way to color a group of edges (each perfect matching with it's own color) in the given adjacency list in GraphPlot? To simplify it, we can assume, that groups goes one by one (e.g. we have 6 edges: 3 groups of two edges, following each other


{1<->2, 3<->4, 1<->3, 2<->4, 1<->2, 3<->4}


In Graph, I've constructed a nice lambda function, that wraps all elements of a list in a Style function, that colors the edge. But in a GraphPlot I can't wrap edges in a Style function.


There's an EdgeRenderingFunction, wich draws all the edges. How do I put three different EdgeRenderingFunctions for the one edge-set? Or is that the wrong way to go?


Any ideas, how to do that?


Answer:


The labeled answer is absolutely correct. Little generalization of what I needed and how to implement it:


  GraphPlot[{{1 -> 2, 1}, {3 -> 4, 1}, {1 -> 3, 2}, {2 -> 4, 2}, {1 -> 2, 3},              
{3 -> 4, 3}}, MultiedgeStyle -> .2,
ImagePadding -> 10,
EdgeRenderingFunction -> (Switch[#3, 1, {Red, Line[#1]},

2, {Blue, Line[#1]}, 3, {Green, Line[#1]},
4, {Dashed, Line[#1]}] &), VertexLabeling -> True,
Method -> "CircularEmbedding"]

enter image description here



Answer



l = {{1, 3}, {3, 4}};
GraphPlot[{1 -> 2, 3 -> 4, 1 -> 3, 2 -> 4, 1 -> 2, 3 -> 4},
EdgeRenderingFunction -> (If[
Intersection[l, {#2}] != {}, {Red, Arrow[#1, .1]},

{Blue,Arrow[#1, .1]}] &)]

enter image description here


Edit


Using edge labels:


l = {1, 3};
GraphPlot[{{1 -> 2, 1}, {3 -> 4, 2}, {1 -> 3, 3}, {2 -> 4, 4}, {1 -> 2, 5}, {3 -> 4, 6}},
EdgeRenderingFunction -> (If[
Intersection[l, {#3}] != {}, {Red, Arrow[#1, .1]}, {Blue, Arrow[#1, .1]}] &)]


enter image description here


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...