Skip to main content

graphs and networks - Coloring edges in GraphPlot


I'm a little stuck with graph drawing part of my research — I can't use the Graph function for plotting my graphs, because my graph is a multi-graph. Graph is convenient because it colors edges quite easily.


Since I have a 3-regular (or even 4-regular) graph, where there are 3 (or 4) perfect matching, I want each of the matching to be colored differently.


What's the best way to color a group of edges (each perfect matching with it's own color) in the given adjacency list in GraphPlot? To simplify it, we can assume, that groups goes one by one (e.g. we have 6 edges: 3 groups of two edges, following each other


{1<->2, 3<->4, 1<->3, 2<->4, 1<->2, 3<->4}


In Graph, I've constructed a nice lambda function, that wraps all elements of a list in a Style function, that colors the edge. But in a GraphPlot I can't wrap edges in a Style function.


There's an EdgeRenderingFunction, wich draws all the edges. How do I put three different EdgeRenderingFunctions for the one edge-set? Or is that the wrong way to go?


Any ideas, how to do that?


Answer:


The labeled answer is absolutely correct. Little generalization of what I needed and how to implement it:


  GraphPlot[{{1 -> 2, 1}, {3 -> 4, 1}, {1 -> 3, 2}, {2 -> 4, 2}, {1 -> 2, 3},              
{3 -> 4, 3}}, MultiedgeStyle -> .2,
ImagePadding -> 10,
EdgeRenderingFunction -> (Switch[#3, 1, {Red, Line[#1]},

2, {Blue, Line[#1]}, 3, {Green, Line[#1]},
4, {Dashed, Line[#1]}] &), VertexLabeling -> True,
Method -> "CircularEmbedding"]

enter image description here



Answer



l = {{1, 3}, {3, 4}};
GraphPlot[{1 -> 2, 3 -> 4, 1 -> 3, 2 -> 4, 1 -> 2, 3 -> 4},
EdgeRenderingFunction -> (If[
Intersection[l, {#2}] != {}, {Red, Arrow[#1, .1]},

{Blue,Arrow[#1, .1]}] &)]

enter image description here


Edit


Using edge labels:


l = {1, 3};
GraphPlot[{{1 -> 2, 1}, {3 -> 4, 2}, {1 -> 3, 3}, {2 -> 4, 4}, {1 -> 2, 5}, {3 -> 4, 6}},
EdgeRenderingFunction -> (If[
Intersection[l, {#3}] != {}, {Red, Arrow[#1, .1]}, {Blue, Arrow[#1, .1]}] &)]


enter image description here


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...