Skip to main content

differential equations - NDSolve's output ignores multiple valid solutions


I'm looking for solutions to a boundary problem involving a non-linear Hamiltonian $$ H(q,p) = \frac{1}{4}\left(q^{2}+p^{2}\right)^{2}, $$ whose solutions are oscillatory but have a complex time dependence. I'm interested in all possible solutions $\left(q(t),p(t)\right)$ that satisfy the following boundary conditions:


$$\begin{cases} q(0)&=-1 \\ q(\pi)&=1 \end{cases}$$


and I am absolutely sure there are a lot (maybe an infinity) of them. When I ask Mathematica to solve the boundary problem


NDSolve[{q'[t] == p[t] (p[t]^2 + q[t]^2), 
p'[t] == -q[t] (p[t]^2 + q[t]^2), q[0] == -1, q[Pi] == 1}, q[t], {t, 0, Pi}]


I get only one solution, which looks like


enter image description here


and satisfies the boundary problem. What I can't figure out is that, manually, I found another solution:


 NDSolve[{q'[t] == p[t] (p[t]^2 + q[t]^2), 
p'[t] == -q[t] (p[t]^2 + q[t]^2), q[0] == -1, p[0] == 1.200859},
q[t], {t, 0, Pi}]

whose graph is


enter image description here .


How can I manipulate NDSolve such that it displays more solutions? Since they may be infinite, not all can be displayed, but why is Mathematica just choosing a particular solution in a set of infinite ones?




Answer



Update


You seem correct QuantumBrick that the Shooting method is better:


sols = Map[First[
NDSolve[{q'[t] == p[t] (p[t]^2 + q[t]^2),
p'[t] == -q[t] (p[t]^2 + q[t]^2),
q[0] == -1, q[Pi] == 1}, {q, p}, {t, 0, Pi},
Method -> "BoundaryValues" -> {"Shooting",
"StartingInitialConditions" -> {p[0] == #}}]] &, Range[0.25, 2, 0.25]];


Plot[Evaluate[q[t] /. sols], {t, 0, Pi}]

enter image description here




Introducing small error into the starting conditions to find other approximate answers (which is similar to your manual answer)


sol = Table[
NDSolve[{q'[t] == p[t] (p[t]^2 + q[t]^2),
p'[t] == -q[t] (p[t]^2 + q[t]^2),
q[0] == -RandomReal[{0.99, 1.01}],
q[Pi] == RandomReal[{0.99, 1.01}]}, q, {t, 0, Pi}], {10}];


Plot[Table[q[t] /. sol[[i]], {i, 1, 10}], {t, 0, Pi}]

enter image description here


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

plotting - Magnifying Glass on a Plot

Although there is a trick in TEX magnifying glass but I want to know is there any function to magnifying glass on a plot with Mathematica ? For example for a function as Sin[x] and at x=Pi/6 Below, this is just a picture desired from the cited site. the image got huge unfortunately I don't know how can I change the size of an image here! Answer Insetting a magnified part of the original Plot A) by adding a new Plot of the specified range xPos = Pi/6; range = 0.2; f = Sin; xyMinMax = {{xPos - range, xPos + range}, {f[xPos] - range*GoldenRatio^-1, f[xPos] + range*GoldenRatio^-1}}; Plot[f[x], {x, 0, 5}, Epilog -> {Transparent, EdgeForm[Thick], Rectangle[Sequence @@ Transpose[xyMinMax]], Inset[Plot[f[x], {x, xPos - range, xPos + range}, Frame -> True, Axes -> False, PlotRange -> xyMinMax, ImageSize -> 270], {4., 0.5}]}, ImageSize -> 700] B) by adding a new Plot within a Circle mf = RegionMember[Disk[{xPos, f[xPos]}, {range, range/GoldenRatio}]] Show...