Skip to main content

differential equations - Minimum energy path of a potential energy surface


I have calculated the energies of a molecule by varying two parameters (Data points are here data). I want to find the minimum energy path from the point (180.0, 179.99, 21.132) to (124.5, 124.49, 0) using Mathematica.



Answer




Let $\varphi \colon \mathbb{R}^d \to \mathbb{R}$ denote a potential function (e.g., from OP's data file).


We attempt to solve the system $$ \left\{ \begin{aligned} \gamma(0) &= p,\\ \operatorname{grad}(\varphi)|_{\gamma(t)} &= \lambda(t) \, \gamma'(t)\quad \text{for all $t \in [0,1]$,}\\ \operatorname{grad}(\varphi)|_{\gamma(1)} &= 0,\\ |\gamma'(t)| & = \mu \quad \text{for all $t \in [0,1]$,}\\ \mu &= \mathcal{L}(\gamma). \end{aligned} \right. $$


Here $\gamma \colon [0,1] \to \mathbb{R}^d$ is the curve that we are looking for, $p \in \mathbb{R}^d$ is the starting point, $\mathcal{L}(\gamma)$ denotes arc length of the curve, and $\mu \in \mathbb{R}$ and $\lambda \colon [0,1] \to \mathbb{R}$ are dummy variables. For the interested reader who wonders why the last two equations are not joined to the single equation $|\gamma'(t)| = \mathcal{L}(\gamma)$: This is done in order to enforce that the linearization of the discretized system (see below) is a sparse matrix. Moreover, these two equations are added for stability and in order to have as many degrees of freedom as equations in the discretized setting.



Next, we discretize the system. We replace the curve $\gamma$ by a polygonal line with $n$ edges and vertex coordinates given by $x_1,x_2,\dotsc,x_{n+1}$ in $\mathbb{R}^d$ and the function $\lambda$ by a sequence $\lambda_1,\dotsc,\lambda_n$ (one may think of this as function that is piecewise constant on edges). Replacing derivatives $\gamma'(t)$ by finite differences $\frac{x_{i+1}-x_i}{n}$ and by evaluating $\operatorname{grad}(\varphi)$ on the first $n-1$ edge midpoints, we arrive at the discretized system



$$ \left\{ \begin{aligned} x_1 &= p,\\ \operatorname{grad}(\varphi)|_{(x_i+x_{i+1})/2} &= \lambda_i \, \tfrac{x_{i+1}-x_{i}}{n}\quad \text{for all $i \in \{1,\dotsc,n-1\}$,}\\ \operatorname{grad}(\varphi)|_{x_{n+1}} &= 0,\\ \left| \tfrac{x_{i+1}-x_{i}}{n} \right| & = \mu \quad \text{for all $i \in \{1,\dotsc,n-1\}$,}\\ \mu &= \sum_{i=1}^{n} \left|x_{i+1}-x_{i}\right|. \end{aligned} \right. $$



These are routines for the system and its linearization. While Ï• denotes the potential, DÏ• and DDÏ• denote its first and second derivative, respectively. n is the number of edges and d is the dimension of the Euclidean space at hand.


The code is already optized for performance (direct initialization of SparseArray from CRS data), so hard to read. Sorry.


ClearAll[F, DF];
F[X_?VectorQ] :=
Module[{x, λ, μ, p1, p2, tangents, midpts, speeds},
x = Partition[X[[1 ;; (n + 1) d]], d];
λ = X[[(n + 1) d + 1 ;; -2]];
μ = X[[-1]];

p1 = Most[x];
p2 = Rest[x];
tangents = (p1 - p2) n;
midpts = 0.5 (p1 + p2);
speeds = Sqrt[(tangents^2).ConstantArray[1., d]];
Join[
x[[1]] - p,
Flatten[Dϕ @@@ Most[midpts] - λ Most[tangents]],
DÏ• @@ x[[-1]],
Most[speeds] - μ,

{μ - Total[speeds]/n}
]
];

DF[X_?VectorQ] :=
Module[{x, λ, μ, p1, p2, tangents, unittangents, midpts, id, A1x, A2x, A3x, A4x, A5x, buffer, A2λ, A, A4μ, A5μ},
x = Partition[X[[1 ;; (n + 1) d]], d];
λ = X[[(n + 1) d + 1 ;; -2]];
μ = X[[-1]];
p1 = Most[x];

p2 = Rest[x];
tangents = (p1 - p2) n;
unittangents = tangents/Sqrt[(tangents^2).ConstantArray[1., d]];
midpts = 0.5 (p1 + p2);
id = IdentityMatrix[d, WorkingPrecision -> MachinePrecision];
A1x = SparseArray[Transpose[{Range[d], Range[d]}] -> 1., {d, d (n + 1)}, 0.];
buffer = 0.5 DDÏ• @@@ Most[midpts];
A2x = With[{
rp = Range[0, 2 d d (n - 1), 2 d],
ci = Partition[Flatten[Transpose[ConstantArray[Partition[Range[d n], 2 d, d], d]]], 1],

vals = Flatten@Join[
buffer - λ ConstantArray[id n, n - 1],
buffer + λ ConstantArray[id n, n - 1],
3
]
},
SparseArray @@ {Automatic, {d (n - 1), d (n + 1)}, 0., {1, {rp, ci}, vals}}];
A3x = SparseArray[Flatten[Table[{i, n d + j}, {i, 1, d}, {j, 1, d}], 1] -> Flatten[DDÏ• @@ x[[-1]]], {d, d (n + 1)}, 0.];
A = With[{
rp = Range[0, 2 d n, 2 d],

ci = Partition[Flatten[Partition[Range[ d (n + 1)], 2 d, d]], 1],
vals = Flatten[Join[unittangents n, -n unittangents, 2]]
},
SparseArray @@ {Automatic, {n, d (n + 1)}, 0., {1, {rp, ci}, vals}}];
A4x = Most[A];
A5x = SparseArray[{-Total[A]/n}];
A2λ = With[{
rp = Range[0, d (n - 1)],
ci = Partition[Flatten[Transpose[ConstantArray[Range[n - 1], d]]], 1],
vals = Flatten[-Most[tangents]]

},
SparseArray @@ {Automatic, {d (n - 1), n - 1}, 0., {1, {rp, ci}, vals}}
];
A4μ = SparseArray[ConstantArray[-1., {n - 1, 1}]];
A5μ = SparseArray[{{1.}}];
ArrayFlatten[{
{A1x, 0., 0.},
{A2x, A2λ, 0.},
{A3x, 0., 0.},
{A4x, 0., A4μ},

{A5x, 0., A5μ}
}]
];


Let's load the data and make an interpolation function from it. Because DF assumes that Ï• is twice differentiable, we use spline interpolation of order 5.


data = Developer`ToPackedArray[N@Rest[
Import[FileNameJoin[{NotebookDirectory[], "data-e.txt"}], "Table"]
]];


p = {180.0, 179.99};
q = {124.5, 124.49};

Block[{x, y},
Ï• = Interpolation[data, Method -> "Spline", InterpolationOrder -> 5];
DÏ• = {x, y} \[Function] Evaluate[D[Ï•[x, y], {{x, y}, 1}]];
DDÏ• = {x, y} \[Function] Evaluate[D[Ï•[x, y], {{x, y}, 2}]];
];

Now, we create some initial data for the system: The straight line from $p$ to $q$ as initial guess for $x$ and some educated guesses for $\lambda$ and $\mu$. I also perturb the potential minimizer q a bit, because that seems to help FindRoot.



d = Length[p];
n = 1000;
tlist = Subdivide[0., 1., n];
xinit = KroneckerProduct[(1 - tlist), p] + KroneckerProduct[tlist , q + RandomReal[{-1, 1}, d]];

p1 = Most[xinit];
p2 = Rest[xinit];
tangents = (p1 - p2) n;
midpts = 0.5 (p1 + p2);


λinit = Norm /@ (Dϕ @@@ Most[midpts])/(Norm /@ Most[tangents]);
μinit = Norm[p - q];
X0 = Join[Flatten[xinit], λinit, {μinit}];

Throwing FindRoot onto it:


sol = FindRoot[F[X] == 0. F[X0], {X, X0}, Jacobian -> DF[X]]; // AbsoluteTiming //First
Xsol = (X /. sol);
Max[Abs[F[Xsol]]]



0.120724


6.15813*10^-10



Partitioning the solution and plotting the result:


xsol = Partition[Xsol[[1 ;; (n + 1) d]], d];
λsol = Xsol[[(n + 1) d + 1 ;; -2]];
μsol = Xsol[[-1]];
curve = Join[xsol, Partition[Ï• @@@ xsol, 1], 2];

{x0, x1} = MinMax[data[[All, 1]]];

{y0, y1} = MinMax[data[[All, 2]]];

Show[
Graphics3D[{Thick, Line[curve]}],
Plot3D[Ï•[x, y], {x, x0, x1}, {y, y0, y1}]
]

enter image description here



I'd like to express my scepticism about curves of steepest descent being a meaningful concept for the application in chemistry. Contrary to the notion of derivative $D \varphi$, the notion of a gradient $\operatorname{grad}(\varphi)$ requires the additional structure of a Riemannian metric. In a nutshell, for detemining the slope of a function $\varphi$ at a point $x$, you do not only need a way to measure height differences (those are provided by $\varphi$ itself), but you need also a way of measuring (infinitesimal) lengths in the $x$-space; this is because of the elementary formula $$\mathrm{slope} = \frac{\Delta \varphi}{|\Delta x|}.$$



So far, we used the Euclidean metric on the parameter space $\mathbb{R}^d$ as Riemannian metric. This is however very arbitrary and depends on the choice of coordinates for the parameters. That means: Whenever different coordinates $ \tilde{x} = \varPsi(x)$ for parameters are chosen, the curve of steepst descent will change in a noncovariant way (see covariance principle). The covariance principle requires that after a change of coordinates, the resulting curve $\tilde \gamma$ satisfies the following equation (maybe up to reparameterization of the curves):


$$\tilde \gamma(t)= \varPsi(\gamma(t)).$$


One can easily check that the curves of steepest descent with respect to the Euclidean metric does violate the covariance principle. For example, we may use the simple linear transformation $\Psi(x_1,x_2) = (x_1,2\,x_2)$ (this amounts to using $\psi(y_1,y_2) = \varphi(y_1, y_2/2)$ instead of $\varphi$ in the algorithms described above and transforming the resulting curve back with $\varPsi$) results in the following red curve of steepest descent, which is very different to the original one (black)


enter image description here


Once more, I'd like to refer to Quapp - Analysis of the concept of minimum energy path on the potential energy surface of chemically reacting systems where the principle of covariance is discussed more thoroughly.


Comments

Popular posts from this blog

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1....

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...