Skip to main content

How to find those missing edges in a grid graph


I want to find a new method for this question.Suppose I have a such graph


graph = Graph[{1 <-> 2, 1 <-> 6, 2 <-> 3, 2 <-> 7, 3 <-> 4, 3 <-> 17, 
4 <-> 5, 4 <-> 9, 5 <-> 10, 6 <-> 7, 7 <-> 17, 7 <-> 12, 17 <-> 9,
17 <-> 13, 9 <-> 10, 9 <-> 14, 11 <-> 12, 11 <-> 16, 12 <-> 13,
12 <-> 8, 13 <-> 14, 13 <-> 18, 14 <-> 24, 14 <-> 19, 24 <-> 20,

16 <-> 8, 16 <-> 21, 8 <-> 18, 8 <-> 22, 18 <-> 19, 18 <-> 23,
19 <-> 20, 19 <-> 15, 20 <-> 25, 21 <-> 22, 21 <-> 26, 22 <-> 23,
22 <-> 27, 23 <-> 15, 23 <-> 28, 15 <-> 29, 25 <-> 30, 26 <-> 27,
27 <-> 28, 28 <-> 29, 29 <-> 30}, VertexLabels -> "Name"]

Mathematica graphics


How to find those missing edges,such as {6<->11,10<->24,15<->25}?



Answer



If only edges are missing, you can first generate a list of candidate grid graphs with the same number of nodes as in graph, then see which one contains graph as a subgraph. IGraph/M has subgraph finding functionality.


It could be derived from any of these grids, as they all have the same number of nodes:



candidateGrids =
With[{vc = VertexCount[graph]},
GridGraph[{#, vc/#}] & /@ Select[Divisors[vc], # <= Sqrt[vc] &]
]

Mathematica graphics


Select the first one of these which contains graph as a subgraph:


<< IGraphM`
completeGrid = SelectFirst[candidateGrids, IGSubisomorphicQ[graph, #] &]


We can find one mapping between the vertices of graph and completeGrid using IGVF2GetSubisomorphism:


mapping = First@IGVF2GetSubisomorphism[graph, completeGrid]
(* <|1 -> 1, 2 -> 2, 6 -> 6, 3 -> 3, 7 -> 7, 4 -> 4, 17 -> 8,
5 -> 5, 9 -> 9, 10 -> 10, 12 -> 12, 13 -> 13, 14 -> 14, 11 -> 11,
16 -> 16, 8 -> 17, 18 -> 18, 24 -> 15, 19 -> 19, 20 -> 20, 21 -> 21,
22 -> 22, 23 -> 23, 15 -> 24, 25 -> 25, 26 -> 26, 27 -> 27, 28 -> 28,
29 -> 29, 30 -> 30|> *)

Then you can retrieve whatever you like: vertex coordinates, missing edges, etc.


coords = PropertyValue[{completeGrid, #}, VertexCoordinates] & /@ 

Lookup[mapping, VertexList[graph]]

SetProperty[
graph,
VertexCoordinates -> Thread[VertexList[graph] -> coords]
]

Mathematica graphics


Or missing edges:


reverseMapping = Reverse /@ Normal[mapping];


missing =
Block[{UndirectedEdge},
SetAttributes[UndirectedEdge, Orderless];
Complement[
EdgeList[completeGrid] /. reverseMapping,
EdgeList[graph]
]
]
(* {6 <-> 11, 10 <-> 24, 15 <-> 25} *)


(The Orderless attribute is temporarily set on UndirectedEdge to make sure that a <-> b is considered the same as b <-> a.)


HighlightGraph[
VertexReplace[completeGrid, reverseMapping],
missing,
GraphHighlightStyle -> "Dashed",
Options[completeGrid, GraphLayout]
]

Mathematica graphics





This will, of course, be quite slow due to the difficulty of finding subgraphs. It will only work well for small grids like the one in your example.


To get all possible mappings instead of just one, use IGVF2FindSubisomorphisms. There will always be at least 4 possible mapping due to the symmetries of grid graphs.


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...