Skip to main content

simplifying expressions - Why doesn't Mathematica make an obvious simplification?


I am doing some calculation with summation and the Kronecker symbol. Here are my steps :


$Assumptions = 
k1 ∈ Reals && k2 ∈ Reals && k3 ∈ Reals && p1 ∈ Reals && p2 ∈ Reals && p3 ∈ Reals
k = {k1, k2, k3};
p = {p1, p2, p3};
d[i_, j_] := KroneckerDelta[i, j]
proj[i_, j_, k1_, k2_, k3_] :=
d[i, j] -
(d[i, 1]*k1 + d[i, 2]*k2 + d[i, 3]*k3)*

(d[j, 1]*k1 + d[j, 2]*k2 + d[j, 3]*k3)/
(k1^2 + k2^2 + k3^2)
test1 = proj[i, j, k1, k2, k3]*proj[i, j, p1, p2, p3];
test2 = Sum[Sum[test1, {i, 1, 3}], {j, 1, 3}]
test2 // Expand

To explain the steps:


1) I define $\vec{k}$ and $\vec{p}$ with real components.
2) I define a projector $P_{ij} \left( \vec{k} \right) = \delta_{ij} - \frac{k_i k_j}{k^2}$.
3) I compute a summation on the repeated subscript.



After the last step, I have a relatively big expression, the product of k and p components. It looks like $$3-\frac{a}{a+b+c} - \frac{b}{a+b+c} - \frac{c}{a+b+c} +...-...$$ The a, b and c stands for k1, k2 and k3 (or p1, 2, 3).


Now the question: why doesn't Mathematica make the simplification because, as anyone can see, the preceding expression can be simplified to $2 +...-...$


Is the problem linked to the Expand operation? How can I make the simplification I want?. I thought of using /. to do it, but that doesn't work either.


I hope someone will understand my question!



Answer



You have to explicitly tell Mathematica to simplify expressions. You can do this using Simplify or FullSimplify


Simplify@test2

(2 k2 k3 p2 p3 + 2 k1 p1 (k2 p2 + k3 p3) +
k1^2 (2 p1^2 + p2^2 + p3^2) + k2^2 (p1^2 + 2 p2^2 + p3^2) +

k3^2 (p1^2 + p2^2 + 2 p3^2))/((k1^2 + k2^2 + k3^2) (p1^2 + p2^2 +
p3^2))

Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...