Skip to main content

plotting - How to increase Spectrogram resolution?


I have a time-domain signal that I want do a time-frequency analysis on it. When I tried the Spectrogram, I always get very low resolution.



For example:


I have a signal like this:


data = Table[
Piecewise[{{Sin[2 \[Pi] 10 t], 0 <= t < 1/4}, {Sin[2 \[Pi] 25 t],
1/4 <= t < 1/2}, {Sin[2 \[Pi] 50 t],
1/2 <= t < 3/4}, {Sin[2 \[Pi] 100 t], 3/4 <= t <= 1}}], {t, 0,
1, 1/1023}];
ListLinePlot[data, AspectRatio -> 0.2]

enter image description here



when I do a wavelet transform, I get a result that I can identify each frequency and their arrival time.


cwd = ContinuousWaveletTransform[data, GaborWavelet[6], {Automatic, 12}];
freq = (1023/(#*GaborWavelet[6]["FourierFactor"])) & /@ (Thread[{Range[8], 1}] /. cwd["Scales"]);
ticks = Transpose[{Range[Length[freq]], freq}];
WaveletScalogram[cwd, Frame -> True, FrameTicks -> {{ticks, Automatic}, Automatic},FrameLabel -> {"Time", "Frequency(Hz)"}, ColorFunction -> "RustTones"]

enter image description here


The wavelet transform is very good for me except I prefer a linear scale instead of a log scale. So I tried the Spectrogram.


Spectrogram[data, SampleRate -> 1023, ColorFunction -> "RustTones", FrameLabel -> {"Time", "Frequency(Hz)"}]


enter image description here


From the spectrogram I can barely see that there are four frequencies components, but the resolution is very low compared to the wavelet transform, and there seems be a lot of "noise" in it. So how can I use Spectrogram to plot a similar result as that of wavelet transform, a result that I can easily see the difference frequencies and their occurrence in time?


Edit:


Second example


data2 = {0.0000688553, 0.0000688557, 0.0000688564, 0.000068857, 0.0000688571, 0.0000688563, 0.0000688551, 0.000068854, 0.0000688539,0.0000688551, 0.0000688573, 0.0000688591, 0.0000688593, 0.0000688572, 0.0000688536, 0.0000688507, 0.0000688504, 0.0000688538, 0.0000688594, 0.0000688641, 0.0000688644, 0.0000688591, 0.0000688504, 0.0000688431, 0.0000688426, 0.0000688506, 0.0000688639, 0.0000688747, 0.0000688756, 0.0000688636, 0.0000688439, 0.0000688279, 0.0000688268, 0.0000688443, 0.0000688727, 0.0000688957, 0.0000688975, 0.0000688724, 0.0000688318, 0.0000687991, 0.0000687969, 0.0000688321, 0.0000688886, 0.0000689341, 0.0000689375, 0.000068889,0.0000688108, 0.0000687484, 0.0000687447, 0.0000688111, 0.0000689165, 0.0000690002, 0.0000690059, 0.0000689171, 0.0000687754, 0.000068664, 0.0000686589, 0.000068778, 0.0000689632, 0.000069108, 0.0000691159, 0.0000689611, 0.0000687182, 0.0000685311,0.0000685273, 0.0000687314, 0.0000690404, 0.0000692758, 0.0000692824, 0.0000690239, 0.0000686276, 0.000068331, 0.0000683373,0.0000686747, 0.0000691661, 0.0000695268, 0.0000695212, 0.0000691047, 0.0000684868, 0.0000680431, 0.0000680816, 0.0000686216, 0.0000693686, 0.0000698882, 0.0000698443, 0.0000691941, 0.0000682709, 0.0000676461, 0.0000677627, 0.0000686028, 0.0000696891, 0.0000703884, 0.000070254, 0.0000692688,0.0000679463, 0.0000671236, 0.0000674037, 0.0000686737, 0.0000701814, 0.0000710486, 0.0000707318, 0.0000692847, 0.0000674719, 0.0000664738, 0.0000670596, 0.0000689181, 0.0000709029, 0.0000718656, 0.0000712238, 0.0000691734, 0.0000668091, 0.0000657258, 0.000066827, 0.000069441, 0.0000718908, 0.0000727864, 0.0000716293, 0.0000688506, 0.0000659424, 0.0000649574, 0.0000668415, 0.0000703392, 0.0000731224, 0.0000736827, 0.0000718041, 0.0000682428, 0.0000649098, 0.0000643029, 0.000067249, 0.0000716496, 0.0000744731, 0.0000743462,0.0000715934, 0.0000673322, 0.0000638262, 0.0000639329, 0.0000681481, 0.0000732907, 0.0000757007, 0.0000745275, 0.0000708955, 0.0000662018, 0.0000628777, 0.0000639981, 0.0000695195, 0.000075033, 0.0000764844, 0.0000740176, 0.0000697294,0.0000650442, 0.0000622699, 0.0000645526, 0.0000711839, 0.0000765324, 0.0000765193, 0.0000727403, 0.0000682638, 0.0000641159, 0.0000621449, 0.000065499, 0.000072824, 0.0000774271, 0.0000756283, 0.0000708033, 0.000066779, 0.0000636471, 0.0000625116,0.0000665943, 0.000074074, 0.0000774592, 0.0000738344, 0.0000684751, 0.0000655744, 0.0000637559, 0.0000632316, 0.0000675249, 0.0000746401, 0.0000765622, 0.0000713567, 0.0000660968, 0.0000648676, 0.0000644101, 0.000064073, 0.0000680156,0.0000743922, 0.0000748728, 0.0000685322, 0.0000639731, 0.0000647345, 0.0000654567, 0.0000648017, 0.0000679187, 0.0000733889, 0.0000726689, 0.0000657091, 0.0000622946, 0.0000651115, 0.0000666921, 0.0000652615, 0.0000672442, 0.0000718318, 0.0000702735, 0.0000631592, 0.0000611172, 0.0000658463, 0.0000679338, 0.0000654099, 0.0000661311, 0.0000699868, 0.0000679712, 0.0000610429, 0.0000603915, 0.0000667595, 0.0000690611, 0.0000653029, 0.0000647858, 0.0000681115, 0.0000659659, 0.0000594197, 0.0000600132, 0.0000676898, 0.0000700163, 0.0000650527, 0.000063423, 0.0000664129,0.0000643775, 0.0000582827, 0.0000598674, 0.0000685134, 0.000070784, 0.0000647821, 0.0000622261, 0.0000650355, 0.0000632614,0.0000575952, 0.000059858, 0.0000691461, 0.0000713679, 0.0000645938, 0.0000613302, 0.000064069, 0.0000626336, 0.0000573173,0.0000599219, 0.0000695408, 0.0000717756, 0.0000645558, 0.0000608195, 0.0000635588, 0.0000624885, 0.0000574204, 0.0000600333, 0.0000696834, 0.0000720124, 0.0000646977, 0.0000607281, 0.0000635126, 0.0000628061, 0.0000578888, 0.0000602007, 0.0000695902, 0.0000720824, 0.0000650125, 0.0000610423, 0.0000639015, 0.0000635503, 0.0000587147, 0.0000604608, 0.0000693062, 0.0000719916, 0.000065463, 0.0000617039,0.0000646594, 0.000064664, 0.0000598881, 0.0000608677, 0.0000689002, 0.0000717529, 0.0000659909, 0.0000626183, 0.0000656854, 0.0000660624, 0.0000613839, 0.0000614786, 0.0000684577, 0.0000713905, 0.0000665298, 0.0000636677, 0.0000668497, 0.0000676302, 0.0000631474, 0.000062335, 0.0000680682,0.0000709408, 0.0000670184, 0.0000647289, 0.0000680081, 0.0000692241, 0.0000650845, 0.0000634439, 0.0000678097, 0.0000704504, 0.0000674126, 0.000065693, 0.0000690214, 0.0000706853,0.00006706, 0.000064764, 0.0000677327, 0.0000699684, 0.0000676912, 0.000066482, 0.0000697781, 0.0000718607, 0.0000689098, 0.0000662045,0.0000678498, 0.0000695389, 0.0000678562, 0.0000670585, 0.0000702138, 0.000072631, 0.0000704663, 0.0000676364, 0.0000681344,0.0000691935, 0.0000679274, 0.0000674255, 0.0000703228, 0.0000729367, 0.0000715913, 0.0000689162, 0.0000685272, 0.0000689492, 0.0000679364, 0.0000676184, 0.0000701554, 0.000072794,0.0000722085, 0.0000699157, 0.0000689494, 0.0000688079, 0.0000679212, 0.0000676936, 0.0000698037, 0.0000722933, 0.0000723258, 0.0000705539, 0.0000693212, 0.0000687577, 0.00006792, 0.0000677163, 0.0000693786, 0.0000715782, 0.0000720359, 0.0000708189, 0.0000695815, 0.0000687748, 0.000067962, 0.0000677458,0.0000689833, 0.0000708076, 0.0000714897, 0.0000707694, 0.0000697032, 0.0000688285, 0.0000680579, 0.0000678211, 0.0000686895, 0.0000701136, 0.0000708499, 0.00007051, 0.0000696956, 0.0000688882, 0.000068197, 0.000067952, 0.0000685249, 0.0000695739, 0.0000702467, 0.0000701544, 0.0000695939, 0.0000689322, 0.0000683544, 0.000068123, 0.0000684773, 0.0000692078, 0.0000697549,0.0000697941, 0.0000694432, 0.0000689511, 0.0000685038, 0.0000683059, 0.000068511, 0.0000689924, 0.0000693973, 0.0000694848,0.0000692835, 0.0000689472, 0.000068627, 0.0000684739, 0.0000685852, 0.0000688856, 0.0000691611, 0.0000692488, 0.0000691419, 0.0000689291, 0.0000687172, 0.0000686102, 0.0000686674, 0.0000688449, 0.0000690179, 0.0000690851, 0.0000690317, 0.0000689062, 0.0000687771, 0.0000687096, 0.0000687381, 0.0000688373, 0.0000689375, 0.0000689807, 0.0000689548, 0.0000688857, 0.0000688133, 0.0000687752, 0.0000687896, 0.0000688418, 0.0000688953, 0.0000689191, 0.0000689065, 0.0000688709, 0.0000688339, 0.0000688149, 0.0000688224, 0.0000688483, 0.0000688742, 0.0000688855, 0.0000688791, 0.000068862, 0.0000688449, 0.0000688367, 0.0000688408,0.0000688527, 0.0000688641, 0.0000688686, 0.0000688653, 0.0000688577, 0.0000688507, 0.0000688478, 0.0000688499, 0.000068855,0.0000688594, 0.0000688608, 0.0000688591, 0.0000688561, 0.0000688535, 0.0000688527, 0.0000688538, 0.0000688558, 0.0000688573, 0.0000688576, 0.0000688568, 0.0000688558, 0.000068855,0.0000688549, 0.0000688554, 0.000068856, 0.0000688564, 0.0000688564, 0.0000688561, 0.0000688557, 0.0000688556, 0.0000688556, 0.0000688558, 0.000068856, 0.0000688561, 0.0000688561,0.000068856, 0.0000688559, 0.0000688559, 0.0000688559, 0.0000688559, 0.000068856, 0.000068856};

cwd=ContinuousWaveletTransform[data2, GaborWavelet[6], {Automatic, 12}]
WaveletScalogram[cwd, ColorFunction -> "RustTones"]

enter image description here



Spectrogram[data2, ColorFunction -> "RustTones"]

enter image description here



Answer



The Spectrogram function also allows you to alter the window length, overlap and apply a windowing function to your data segment before FFT. You'll get better results if you utilize those (which requires some knowledge of DSP and your specific problem) instead of using the default parameters and the rectangle window.


For instance, the following shows the frequencies distinctly:


Spectrogram[data, 128, 64, BlackmanWindow, SampleRate -> 1023, 
FrameLabel -> {"Frequency(Hz)", "Time"}]



Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...