Skip to main content

fourier analysis - Calculation of 2D FFT for an image



I am trying to obtain 2D FFT of an image. From the 2D FFT, I wish to calculate the amplitude of the FFT averaged over a circle vs the distance in pixels by varying the radius of the pixels which is effectively the distance in pixels.


The FFT of the original image is obtained by the following code. The scale bar for the original image is roughly like this: Distance in pixels = 4 Distance in scale = 1 micrometer.


Code to evaluate 2D FFT:


data = Binarize[Dilation[image, 1]]

Dimensions[ImageData[data]]; //this step is just for checking purposes

Imgdata = ImageData[data]

Since I have already binarized the image, the dimension of the image will be of the form M X N The main steps for the Fourier Transform:



FWData = Imgdata

FWData = FWData*(-1)^Table[i + j, {i, IRow}, {j, ICol}]

fw = Fourier[FWData, FourierParameters -> {1, -1}]

Magnification Factor is just for adjusting the intensity of the FFT image which I have observed in some cases is too light


MagnificationFactor = 1

abs = MagnificationFactor*Log[1 + Abs@fw]


Image[abs/Max[abs]]

Finally, I arive at the following image giving the 2D FFT amplitude spectrum. 2d FFT of the image


Black = 0 and white = 1


Now what I have to do is to plot the amplitude of the FFT averaged over circles with respect to distance in pixels.I wanted to find the centre of the image and then assume a circle with a certain radius and average the FFT amplitude over that radius and continue by changing the radius.


Once, we get the plot we can change the distance in pixels to the real world distance using the scale bar.


Any help will be highly appreciated.




Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...