Skip to main content

plotting - LogPlot axes labels destroyed when working in high precision


Bug introduced in 7.0 or earlier and fixed in 11.0.0




(I'm using Mathematica 8.)



I have a Taylor series:


poly = Normal[Series[E^x, {x, 0, 10}]]

I want to produce a log-linear plot of the error. This is easy enough with the following code:


LogPlot[Abs[E^x - poly], {x, -1, 1}]

This produces


a log-linear plot


Now, I want to plot even smaller values of the error (in particular I want the plot to be sensible near zero), so I tell LogPlot to use high precision as follows:


LogPlot[Abs[E^x - poly], {x, -1, 1}, WorkingPrecision -> 30]


However this destroys the labeling on the y-axis:


bad behavior of LogPlot[]


Does anyone know what has gone wrong here? How do I fix it?



Answer



This is not simply a mislabeling of the axes. More than that is going on: the plot produced is not even logarithmic. Let's try to use the default (non-log-transformed tick marks):


First, with MachinePrecision (correct result):


Show[
LogPlot[Abs[E^x - poly], {x, -1, 1}, WorkingPrecision -> MachinePrecision],
Ticks -> Automatic

]

Mathematica graphics


Then with higher precision (incorrect result):


Show[
LogPlot[Abs[E^x - poly], {x, -1, 1}, WorkingPrecision -> 30],
Ticks -> Automatic
]

Mathematica graphics



I don't think it's worth digging into how LogPlot works, as at this point this clearly seems to be a bug.




You can work around it by using Plot instead of LogPlot:


Plot[Log@Abs[E^x - poly], {x, -1, 1}, WorkingPrecision -> 30]

Mathematica graphics


But then you have to do re-label the axes yourself (CustomTicks / LevelScheme are helpful packages). If you don't mind losing adaptive plotting, you can generate the points to be shown yourself and us ListLogPlot:


ListLogPlot[Table[Evaluate@Abs[E^x - poly], {x, -1, 1, 0.01`30}]]

Mathematica graphics



(You'd probably want Joined -> True here, but seeing where the points are helps you tune the plot, so I didn't include it now.)


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...