Skip to main content

Compile, "global variables" and recursion


I am trying to do something similar to this, namely to make a Compile'd function outer that itself calls a Compile'd function inner which accesses a variable defined in outer. Copy-pasting the example Leonid gives in the link, I get no errors. However in my case, I want inner to be a recursive function.


So far I have tried (the functions are toy examples):


Clear[inner];
inner = Compile[ {{i, _Integer}, {j, _Integer}},
If[i >= j, Return[], AppendTo[bag, list]; inner[i + 1, j]];
,CompilationOptions -> {"InlineExternalDefinitions" -> True,
"InlineCompiledFunctions" -> False} ]

and



Clear[outer];
outer = Compile[{{i, _Integer}},
Block[{list = Table[{0, 0}, {i}], bag},
bag = {list};
inner[1, i];
bag
]
, CompilationOptions -> {"InlineExternalDefinitions" -> True,
"InlineCompiledFunctions" -> True}
]


Trying to execute this last piece results in the error message:


Compile::cret : The type of return values in (...) are different.
Evaluation will use the uncompiled function.

I have a hard time interpreting the output of CompilePrint in this case, so I cannot pinpoint the error in order to move further with this. Since I am able to create compiled recursive functions just fine in general, and the link provides a "hack" to make inner see the variables in outer, I think it should be possible to do this, but perhaps not...


EDIT: I have verified that the lingering MainEvaluate is not due AppendTo or some-such, by making the function inner even more basic. I have also tried all possible combinations of True/False for the CompilationOptions for both inner and outer with no success. So it seems to me that it's possible to compile either a recursive function, or a compiled function modifying a "global" variable when called from another compiled function, but not both =(




Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...