Skip to main content

plotting - Hatching pattern in ColorRules for MatrixPlot


Using ColorRules with MatrixPlot, how does one get a hatching pattern in one of the cells?


For example, consider the data,


data = { {1, 2, 1}, {2, 2, 3} }


And now I consider the MatrixPlot,


MatrixPlot[data,
ColorRules -> {
1 -> Blue,
2 -> Red,
3 -> Purple
}
]


matrixplot_example


Question: For the cell with the value 3 and currently with the color Purple, how can I get it to have a Purple color with a hatched pattern?



Answer



As belisarius said, there is no current support for hatching but you could use a graphics overlay as a workaround.


First create the desired pattern and texture a Polygon with it:


t = Table[{0, n}, {n, -1, 1, 0.1}];

g[c_] := Graphics[{AbsoluteThickness[8], Line /@ Transpose[{t, t + 1}]},
PlotRange -> {{0, 1}, {0, 1}}, Background -> c];


pattern2[p_, c_] := Graphics[{Texture[g[c]], Polygon[{
{p[[1]] - 1, p[[2]] - 1},
{p[[1]], p[[2]] - 1},
{p[[1]], p[[2]]},
{p[[1]] - 1, p[[2]]}},
VertexTextureCoordinates -> {{0, 0}, {0, 1}, {1, 1}, {1, 0}}
]}]

pattern2[{1, 1}, Purple]



enter image description here



Create a function to place the pattern over any field of a given value n. matrixLength is the length of the input data, c the color.


overlay[patternFunc_, n_, c_, matrixLength_] := 
Show[patternFunc[#,c] & /@ ({#2,matrixLength +
1 - #1} & @@@ Position[data, n])];

Example:


plot = MatrixPlot[data, ColorRules -> {1 -> Red, 2 -> Orange, 3 -> Purple}]


enter image description here


Show[
plot,
overlay[pattern2, 3, Purple, Length@data]
]

enter image description here


Not the most elegant/efficient solution but it might be useful as a starting point.


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...