Skip to main content

conversion - How to write aligned equations and export them HTML/TeX


This question is mainly about exporting to HTML/TeX. For those of you who do not know how to write aligned equations in Mathematica please see this answer. Lets assume that you modified your stylesheet as I mentioned in my answer. In my notebook this is the cell expression I have:


Cell[BoxData[
FormBox[GridBox[{
{
RowBox[{
RowBox[{"a", "+", "b", "+", "c"}], "\[AlignmentMarker]", "=", "d"}]},
{
RowBox[{"c", "\[AlignmentMarker]", "=",
RowBox[{"d", "-", "a", "-", "b"}]}]}

}], TraditionalForm]], "DisplayMath"]

Now I want to export this expression to TeX, we can do this with:


cell = Cell[BoxData[
FormBox[GridBox[{
{
RowBox[{
RowBox[{"a", "+", "b", "+", "c"}], "\[AlignmentMarker]", "=", "d"}]},
{
RowBox[{"c", "\[AlignmentMarker]", "=",

RowBox[{"d", "-", "a", "-", "b"}]}]}
}], TraditionalForm]], "DisplayMath"];
Convert`TeX`BoxesToTeX[cell]

The output is:


\begin{array}{c}
a+b+c=d \\
c=d-a-b
\end{array}


The function Convert`TeX`BoxesToTeX is undocumented but the documentation does show how to use it under examples. It seems that the function doesn't do anything with the \[AligmentMarker], but I'm sure we could make good use of them.


What we want to do is find any appearances of the \[AligmentMarker] and substitute them with "&". And if we did find some \[AligmentMaker]s then we use StringReplace to change "array" for "aligned". This is the output that I would like to end up with:


\begin{aligned}
a+b+c&=d \\
c&=d-a-b
\end{aligned}

Does anyone know how to create a wrapper function that does this? The main problem I'm having is replacing things in cell.




Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...